299 research outputs found

    CRISPR-Cas system:A new paradigm for bacterial stress response through genome rearrangement

    Get PDF
    Bacteria can receive genetic material from other bacteria or invading bacteriophages primarily through horizontal gene transfer. These genetic exchanges can result in genome rearrangement and the acquisition of novel traits that assist cells with stresses and adverse environmental conditions. Bacteria have a relatively small genome with >90% of sequences consisting of protein coding genes, stable RNA biomolecules, and gene regulatory sequences. The remaining genome fraction is primarily large repeat elements, such as retrotransposons, interspersed repeat elements, insertion sequences, and the more recently discovered clustered regularly interspaced short palindromic repeats (CRISPRs), with CRISPR-associated gene sequences (cas) that code for various Cas proteins. The CRISPR genetic locus is a series of direct repeats that are interspersed by unique spacer sequences. These unique spacer sequences represent signatures of bacteriophage genomes as the "working memory" for a bacterium to identify and destroy an invading phage genome that has previously infected the host. The protective function of the CRISPR-Cas systems are found in ∌40% of sequenced bacterial genomes, and it is often defined as bacterial acquired immunity. This chapter will elaborate the origin, structure, and function of CRISPR-Cas genetic systems acquired by bacteria, and their role in adaptive fitness while being subjected to environmental stress conditions

    A High Deuterium Abundance at z=0.7

    Get PDF
    Of the light elements, the primordial abundance of deuterium, (D/H)_p, provides the most sensitive diagnostic for the cosmological mass density parameter Omega_B. Recent high redshift (D/H) measurements are highly discrepant, although this may reflect observational uncertainties. The larger (D/H) values, which imply a low Omega_B and require the Universe to be dominated by non-baryonic matter (dynamical studies indicate a higher total density parameter), cause problems for galactic chemical evolution models since they have difficulty in reproducing the large decline down to the lower present-day (D/H). Conversely, low (D/H) values imply an Omega_B greater than derived from ^7Li and ^4He abundance measurements, and may require a deuterium abundance evolution that is too low to easily explain. Here we report the first measurement at intermediate redshift, where the observational difficulties are smaller, of a gas cloud with ideal characteristics for this experiment. Our analysis of the z = 0.7010 absorber toward 1718+4807 indicates (D/H) = 2.0 +/- 0.5 x 10^{-4} which is in the high range. This and other independent observations suggests there may be a cosmological inhomogeneity in (D/H)_p of at least a factor of ten.Comment: 6 pages, 1 figur

    The effects of a Variable IMF on the Chemical Evolution of the Galaxy

    Get PDF
    In this work we explore the effects of adopting an initial mass function (IMF) variable in time on the chemical evolution of the Galaxy. In order to do that we adopt a chemical evolution model which assumes two main infall episodes for the formation of the Galaxy. We study the effects on such a model of different IMFs. First, we use a theoretical one based on the statistical description of the density field arising from random motions in the gas. This IMF is a function of time as it depends on physical conditions of the site of star formation. We also investigate the behaviour of the model predictions using other variable IMFs, parameterized as a function of metallicity. Our results show that the theoretical IMF when applied to our model depends on time but such time variation is important only in the early phases of the Galactic evolution, when the IMF is biased towards massive stars. We also show that the use of an IMF which is a stronger function of time does not lead to a good agreement with the observational constraints suggesting that if the IMF varied this variation should have been small. Our main conclusion is that the G-dwarf metallicity distribution is best explained by infall with a large timescale and a constant IMF, since it is possible to find variable IMFs of the kind studied here, reproducing the G-dwarf metallicity but this worsens the agreement with other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds. (Kluwer, Dordrecht) in pres

    The mixed problem for the Laplacian in Lipschitz domains

    Full text link
    We consider the mixed boundary value problem or Zaremba's problem for the Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We assume that the boundary between the sets where we specify Dirichlet and Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p and the Dirichlet data is in the Sobolev space of functions having one derivative in L^p for some p near 1. Under these conditions, there is a unique solution to the mixed problem with the non-tangential maximal function of the gradient of the solution in L^p of the boundary. We also obtain results with data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since the paper appeared long ago, this submission includes the complete paper, followed by a short section that gives the correction to one step in the proo

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The Îł\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    The New Galaxy: Signatures of its Formation

    Get PDF
    The formation and evolution of galaxies is one of the great outstanding problems of astrophysics. Within the broad context of hierachical structure formation, we have only a crude picture of how galaxies like our own came into existence. A detailed physical picture where individual stellar populations can be associated with (tagged to) elements of the protocloud is far beyond our current understanding. Important clues have begun to emerge from both the Galaxy (near-field cosmology) and the high redshift universe (far-field cosmology). Here we focus on the fossil evidence provided by the Galaxy. Detailed studies of the Galaxy lie at the core of understanding the complex processes involved in baryon dissipation. This is a necessary first step towards achieving a successful theory of galaxy formation.Comment: 51 pages (with figs embedded) + 4 colour plates. The interested reader is strongly encouraged to ignore the latex version and low res figures within; instead, download the properly typeset paper (6 Mby) and colour plates (3 Mby) from ftp://www.aao.gov.au/pub/local/jbh/araa/Galley
    • 

    corecore