299 research outputs found
CRISPR-Cas system:A new paradigm for bacterial stress response through genome rearrangement
Bacteria can receive genetic material from other bacteria or invading bacteriophages primarily through horizontal gene transfer. These genetic exchanges can result in genome rearrangement and the acquisition of novel traits that assist cells with stresses and adverse environmental conditions. Bacteria have a relatively small genome with >90% of sequences consisting of protein coding genes, stable RNA biomolecules, and gene regulatory sequences. The remaining genome fraction is primarily large repeat elements, such as retrotransposons, interspersed repeat elements, insertion sequences, and the more recently discovered clustered regularly interspaced short palindromic repeats (CRISPRs), with CRISPR-associated gene sequences (cas) that code for various Cas proteins. The CRISPR genetic locus is a series of direct repeats that are interspersed by unique spacer sequences. These unique spacer sequences represent signatures of bacteriophage genomes as the "working memory" for a bacterium to identify and destroy an invading phage genome that has previously infected the host. The protective function of the CRISPR-Cas systems are found in âŒ40% of sequenced bacterial genomes, and it is often defined as bacterial acquired immunity. This chapter will elaborate the origin, structure, and function of CRISPR-Cas genetic systems acquired by bacteria, and their role in adaptive fitness while being subjected to environmental stress conditions
A High Deuterium Abundance at z=0.7
Of the light elements, the primordial abundance of deuterium, (D/H)_p,
provides the most sensitive diagnostic for the cosmological mass density
parameter Omega_B. Recent high redshift (D/H) measurements are highly
discrepant, although this may reflect observational uncertainties. The larger
(D/H) values, which imply a low Omega_B and require the Universe to be
dominated by non-baryonic matter (dynamical studies indicate a higher total
density parameter), cause problems for galactic chemical evolution models since
they have difficulty in reproducing the large decline down to the lower
present-day (D/H). Conversely, low (D/H) values imply an Omega_B greater than
derived from ^7Li and ^4He abundance measurements, and may require a deuterium
abundance evolution that is too low to easily explain. Here we report the first
measurement at intermediate redshift, where the observational difficulties are
smaller, of a gas cloud with ideal characteristics for this experiment. Our
analysis of the z = 0.7010 absorber toward 1718+4807 indicates (D/H) = 2.0 +/-
0.5 x 10^{-4} which is in the high range. This and other independent
observations suggests there may be a cosmological inhomogeneity in (D/H)_p of
at least a factor of ten.Comment: 6 pages, 1 figur
The effects of a Variable IMF on the Chemical Evolution of the Galaxy
In this work we explore the effects of adopting an initial mass function
(IMF) variable in time on the chemical evolution of the Galaxy. In order to do
that we adopt a chemical evolution model which assumes two main infall episodes
for the formation of the Galaxy. We study the effects on such a model of
different IMFs. First, we use a theoretical one based on the statistical
description of the density field arising from random motions in the gas. This
IMF is a function of time as it depends on physical conditions of the site of
star formation. We also investigate the behaviour of the model predictions
using other variable IMFs, parameterized as a function of metallicity. Our
results show that the theoretical IMF when applied to our model depends on time
but such time variation is important only in the early phases of the Galactic
evolution, when the IMF is biased towards massive stars. We also show that the
use of an IMF which is a stronger function of time does not lead to a good
agreement with the observational constraints suggesting that if the IMF varied
this variation should have been small. Our main conclusion is that the G-dwarf
metallicity distribution is best explained by infall with a large timescale and
a constant IMF, since it is possible to find variable IMFs of the kind studied
here, reproducing the G-dwarf metallicity but this worsens the agreement with
other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars
vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds.
(Kluwer, Dordrecht) in pres
The mixed problem for the Laplacian in Lipschitz domains
We consider the mixed boundary value problem or Zaremba's problem for the
Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on
part of the boundary and Neumann data on the remainder of the boundary. We
assume that the boundary between the sets where we specify Dirichlet and
Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p
and the Dirichlet data is in the Sobolev space of functions having one
derivative in L^p for some p near 1. Under these conditions, there is a unique
solution to the mixed problem with the non-tangential maximal function of the
gradient of the solution in L^p of the boundary. We also obtain results with
data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since
the paper appeared long ago, this submission includes the complete paper,
followed by a short section that gives the correction to one step in the
proo
Recommended from our members
Reconciled climate response estimates from climate models and the energy budget of Earth
Climate risks increase with mean global temperature, so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earthâs historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming. However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record3, 4. Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861â2009 because slower-warming regions are preferentially sampled and water warms less than air5. Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66â°C, with a 5â95% range of 1.0â3.3â°C, consistent with the climate models considered in the IPCC 5th Assessment Report
Very Cold Gas and Dark Matter
We have recently proposed a new candidate for baryonic dark matter: very cold
molecular gas, in near-isothermal equilibrium with the cosmic background
radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed
in a fractal structure, resembling the hierarchical structure of the detected
interstellar medium.
We present some perspectives of detecting this very cold gas, either directly
or indirectly. The H molecule has an "ultrafine" structure, due to the
interaction between the rotation-induced magnetic moment and the nuclear spins.
But the lines fall in the km domain, and are very weak. The best opportunity
might be the UV absorption of H in front of quasars. The unexpected cold
dust component, revealed by the COBE/FIRAS submillimetric results, could also
be due to this very cold H gas, through collision-induced radiation, or
solid H grains or snowflakes. The -ray distribution, much more
radially extended than the supernovae at the origin of cosmic rays
acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded
compressed tar file. To be published in the proceeedings of the
"Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block
(ed.), (Kluwer Dordrecht
The Cosmic Infrared Background: Measurements and Implications
The cosmic infrared background records much of the radiant energy released by
processes of structure formation that have occurred since the decoupling of
matter and radiation following the Big Bang. In the past few years, data from
the Cosmic Background Explorer mission provided the first measurements of this
background, with additional constraints coming from studies of the attenuation
of TeV gamma-rays. At the same time there has been rapid progress in resolving
a significant fraction of this background with the deep galaxy counts at
infrared wavelengths from the Infrared Space Observatory instruments and at
submillimeter wavelengths from the Submillimeter Common User Bolometer Array
instrument. This article reviews the measurements of the infrared background
and sources contributing to it, and discusses the implications for past and
present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of
Astronomy and Astrophysics, 2001, Vol. 3
The origin of dust in galaxies revisited: the mechanism determining dust content
The origin of cosmic dust is a fundamental issue in planetary science. This
paper revisits the origin of dust in galaxies, in particular, in the Milky Way,
by using a chemical evolution model of a galaxy composed of stars, interstellar
medium, metals (elements heavier than helium), and dust. We start from a review
of time-evolutionary equations of the four components, and then, we present
simple recipes for the stellar remnant mass and yields of metal and dust based
on models of stellar nucleosynthesis and dust formation. After calibrating some
model parameters with the data from the solar neighborhood, we have confirmed a
shortage of the stellar dust production rate relative to the dust destruction
rate by supernovae if the destruction efficiency suggested by theoretical works
is correct. If the dust mass growth by material accretion in molecular clouds
is active, the observed dust amount in the solar neighborhood is reproduced. We
present a clear analytic explanation of the mechanism for determining dust
content in galaxies after the activation of accretion growth: a balance between
accretion growth and supernova destruction. Thus, the dust content is
independent of the uncertainty of the stellar dust yield after the growth
activation. The timing of the activation is determined by a critical metal mass
fraction which depends on the growth and destruction efficiencies. The solar
system formation seems to have occurred well after the activation and plenty of
dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
The New Galaxy: Signatures of its Formation
The formation and evolution of galaxies is one of the great outstanding
problems of astrophysics. Within the broad context of hierachical structure
formation, we have only a crude picture of how galaxies like our own came into
existence. A detailed physical picture where individual stellar populations can
be associated with (tagged to) elements of the protocloud is far beyond our
current understanding. Important clues have begun to emerge from both the
Galaxy (near-field cosmology) and the high redshift universe (far-field
cosmology). Here we focus on the fossil evidence provided by the Galaxy.
Detailed studies of the Galaxy lie at the core of understanding the complex
processes involved in baryon dissipation. This is a necessary first step
towards achieving a successful theory of galaxy formation.Comment: 51 pages (with figs embedded) + 4 colour plates. The interested
reader is strongly encouraged to ignore the latex version and low res figures
within; instead, download the properly typeset paper (6 Mby) and colour
plates (3 Mby) from ftp://www.aao.gov.au/pub/local/jbh/araa/Galley
- âŠ