547 research outputs found

    Cyclotron resonance lineshape in a Wigner crystal

    Full text link
    The cyclotron resonance absorption spectrum in a Wigner crystal is calculated. Effects of spin-splitting are modelled by substitutional disorder, and calculated in the coherent potential approximation. Due to the increasing strength of the dipole-dipole interaction, the results show a crossover from a double-peak spectrum at small filling factors to a single-peak spectrum at filling factors \agt 1/6. Radiation damping and magnetophonon scattering can also influence the cyclotron resonance. The results are in very good agreement with experiments.Comment: 4 pages REVTEX, attempt to append 3 figures that seem to have been lost last tim

    Dissipative Van der Waals interaction between a small particle and a metal surface

    Full text link
    We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth

    Full text link
    Semiconductor nanowires offer the opportunity to incorporate novel structures and functionality into electronic and optoelectronic devices. A clear understanding of the nanowire growth mechanism is essential for well-controlled growth of structures with desired properties, but the understanding is currently limited by a lack of empirical measurements of important parameters during growth, such as catalyst particle composition. However, this is difficult to accurately determine by investigating post-growth. We report direct measurement of the catalyst composition of individual gold seeded GaAs nanowires inside an electron microscope as they grow. The Ga content in the catalyst during growth increased with both temperature and Ga precursor flux. A direct comparison of the calculated phase diagrams of the Au-Ga-As ternary system to the measured catalyst composition not only lets us estimate the As content in the catalyst but also indicates the relevance of phase diagrams to understanding nanowire growth

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is ≈\approx 10−4^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Quality assessment with HPLC in released varieties of tetraploid (Triticum durum Desf.) wheat from Ethiopia and Spain

    Get PDF
    Quality of durum wheat is of importance for pasta production. Our aim was to evaluate the quality of released durum wheat at Ethiopia by the use of pheno-quality traits as well as composition and amount and size distribution of proteins; these attributes were also compared with the same ones for Spanish released wheat grown in the same environment. Large variation was obtained among the released durum wheat for all parameters investigated. The evaluation of protein parameters indicated the varieties Klinto, LD-357, Tob-66 and Ude to have suitable protein composition for pasta production, while Tob-66 showed high protein concentration and Tob-66, LD-357 and Yerer showed high gluten strength. The most promising Ethiopian variety for pasta production as to the results from the present study was Tob-66. Also, LD-357 showed promising protein characteristics, although the kernels were white, which is not desired for pasta production. Some of the evaluated varieties might be of interest for production of local leavened bread although the quality is not good enough for pasta production

    Site-Selective Orbital Interactions in an Ultrathin Iron-Carbene Photosensitizer Film

    Get PDF
    We present the first experimental study of the frontier orbitals in an ultrathin film of the novel hexa-carbene photosensitizer [Fe(btz)3]3+, where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene). Resonant photoelectron spectroscopy (RPES) was used to probe the electronic structure of films where the molecular and oxidative integrities had been confirmed with optical and X-ray spectroscopies. In combination with density functional theory calculations, RPES measurements provided direct and site-selective information about localization and interactions of occupied and unoccupied molecular orbitals. Fe 2p, N 1s, and C 1s measurements selectively probed the metal, carbene, and side-group contributions revealing strong metal–ligand orbital mixing of the frontier orbitals. This helps explain the remarkable photophysical properties of iron-carbenes in terms of unconventional electronic structure properties and favorable metal–ligand bonding interactions—important for the continued development of these type of complexes toward light-harvesting and light-emitting applications

    Time-frequency characterization of femtosecond extreme ultraviolet pulses

    Get PDF
    A measurement of chirp and pulse duration of fifth harmonic of a frequency-doubled Ti:sapphire laser was presented. The photoelectron signal due to cross correlation of harmonics generated by 400 nm blue light and an 800 nm infrared probe pulse, was measured using energy resolved cross-correlation method. Results demonstrated that the technique could be used to characterize the time-frequency behavior of much higher-order harmonics
    • …
    corecore