26 research outputs found

    Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number

    Get PDF
    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADPribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production

    rosettR: protocol and software for seedling area and growth analysis

    Get PDF
    Growth is an important parameter to consider when studying the impact of treatments or mutations on plant physiology. Leaf area and growth rates can be estimated efficiently from images of plants, but the experiment setup, image analysis, and statistical evaluation can be laborious, often requiring substantial manual effort and programming skills. Here we present rosettR, a non-destructive and high-throughput phenotyping protocol for the measurement of total rosette area of seedlings grown in plates in sterile conditions. We demonstrate that our protocol can be used to accurately detect growth differences among different genotypes and in response to light regimes and osmotic stress. rosettR is implemented as a package for the statistical computing software R and provides easy to use functions to design an experiment, analyze the images, and generate reports on quality control as well as a final comparison across genotypes and applied treatments. Experiment procedures are included as part of the package documentation. Using rosettR it is straight-forward to perform accurate, reproducible measurements of rosette area and relative growth rate with high-throughput using inexpensive equipment. Suitable applications include screening mutant populations for growth phenotypes visible at early growth stages and profiling different genotypes in a wide variety of treatments

    Elasto-plastic failure of locally supported silos with U-shaped longitudinal Stiffeners

    No full text
    Ranging from agriculture to food processing, from mining to industrial processing, all these sectors have a need for the temporary storage of (dry) powdered, granular, and bulk materials between different stages of all kinds of manufacturing processes and between manufacturing process and transportation, or vice versa. Silos are therefore the perfect solution to meet this need, because they can easily store large volumes on a relatively limited floor space. Frequently, silos have a circular platform and are placed in elevated position. The latter can be achieved by a limited number of discrete equidistant supports around the barrel circumference. However, in such cases, large loads have to be transferred to the limited number of supports, causing locally high axial compressive stress concentrations, and consequently premature failure due to plastic yielding and/or elastic buckling (depending on the thickness of the silo wall). A possible answer to avoid these problems is to provide a partial-height U-shaped longitudinal stiffener above each support. Such stiffeners allow for a more gradual load transfer to the supports, increasing the maximum failure load. This paper aims to map the influence of the dimensions of such longitudinal stiffeners (i.e. the parameters of the cross-section and the height) on the failure behaviour of thick-walled silos. All results and findings are based on geometrically and materially non-linear analyses or GMNA performed with finite element software. The simulations indicate that correctly, for thick-walled silos, failure will always occur by (elasto-)plastic yielding. Depending on the longitudinal stiffener cross-section, the location of failure will occur in the stiffened zone of the silo just above the supports for silos with stiffeners with a small cross-section, whereas for stiffeners with larger cross-sections, failure occurs in the unstiffened zone just above the terminations of the stiffeners. In addition, the stiffener width in circumferential and radial direction have respectively an advantageous and a disadvantageous influence on the failure load. Finally, the stiffener height only has a positive impact on the failure load when failure occurs in the unstiffened silo wall. This can be addressed to the distribution of the supporting force over the entire circumference with higher stiffeners

    PARP inhibition and its effect on the phenylpropanoid pathway.

    No full text
    <p>Arabidopsis shoots were harvested at day7 after transfer. Per replicate 10–12 seedlings were harvested, with 5 biological replicates in each of the three independent experiments (n = 15). The metabolite content relative to the control (no 3MB) is shown and when changed significantly the relative content is underlined. Only metabolites with a clear annotation and positioning within the pathway are shown.</p

    PARP inhibition affects redox metabolite concentrations.

    No full text
    <p>Arabidopsis shoots were harvested at day7 after transfer. Per replicate 10–12 seedlings were harvested, with 5 biological replicates in each of the three independent experiments (n = 15) and analyzed using LC-MS. The relevant data of the redox metabolites was extracted from the LC-MS data set.</p

    PARP inhibition induced cell number increase.

    No full text
    <p>Arabidopsis leaf two was analyzed after two days of transferring the seedlings (day2) or after seven days (day7) either to treatment or control conditions. (A) Cell number per mm<sup>2</sup>, (B) cell size in µm and (C) the calculated cell number per leaf is presented. Seedlings were previous grown for seven days in control conditions. In each experiment 4–6 leafs were analyzed and the experiment repeated three times independently (n = 12–18). Significant differences (P<0.05) between treated and untreated plants is indicated by an asterisk.</p

    PARP activity and effects on primary metabolism.

    No full text
    <p>The metabolite profile of Arabidopsis shoots was analyzed by GC-MS at the indicated times following transfer of the seedlings after 7 days growth on control media to either control or PARP inhibitor containing media. Plants were grown in parallel to those for the physiological and microarray analysis. Five individual samples, each a pool of 10–12 plants, were harvested and analyzed in three independent experiments (n = 15). Amino, organic and fatty acids with significant changes in their relative abundance are shown. Metabolite content relative to the (−3MB), with red and blue indicating accumulation and depletion, are shown.</p

    PARP inhibition enhances growth and biomass in control conditions.

    No full text
    <p>Hydroponically grown plants were analyzed in respect to leaf area and biomass. 18 plants per experiment and treatment were analyzed, repeated in four experiments and the average leaf area of plants at day 26 (A) or shoot biomass (B), root biomass (C) and the shoot to root ration (D) of plants harvested day 30 is shown. Significant differences (P<0.05) between treated (0.2 mM 3MB) and untreated (125 µl DMSO) plants is indicated by an asterisk.</p

    PARP inhibition and its effect on guard cell development.

    No full text
    <p>Arabidopsis leaf two was analyzed after two days of transferring the seedlings (day2) or after seven days (day7) either to treatment or control conditions. (A) The stomata index (SI) is shown, calculated by number of stomata divided by number of cells, (B) the number of stomata per mm<sup>2</sup> and (C) the calculated total number of stomata per leaf is presented. In each experiment 4–6 leafs were analyzed and the experiment repeated three times independently (n = 12–18). Significant differences (P<0.05) between treated and untreated plants is indicated by an asterisk.</p

    Ploidy analysis of leaf two.

    No full text
    <p>Arabidopsis leaf two was analyzed at the indicated time points from plants subjected to PARP inhibition or control conditions. (A) the calculated EI is shown, EI represents the number of endo cycles undergone by a typical nuclei (EI  =  1*4N+2*8N+3*16N), in (B–D) percentage of 2N, 4N and 8N nuclei is presented. 10–12 leaf two were pooled for a replicate, four biological replicates were analyzed in each of the two independent experiments (n = 8).</p
    corecore