2,780 research outputs found

    The Wrong Kind of Gravity

    Get PDF
    The KPZ formula shows that coupling central charge less than one spin models to 2D quantum gravity dresses the conformal weights to get new critical exponents, where the relation between the original and dressed weights depends only on the central charge. At the discrete level the coupling to 2D gravity is effected by putting the spin models on annealed ensembles of planar random graphs or their dual triangulations, where the connectivity fluctuates on the same time-scale as the spins. Since the sole determining factor in the dressing is the central charge, one could contemplate putting a spin model on a quenched ensemble of 2D gravity graphs with the ``wrong'' central charge. We might then expect to see the critical exponents appropriate to the central charge used in generating the graphs. In such cases the KPZ formula could be interpreted as giving a continuous line of critical exponents which depend on this central charge. We note that rational exponents other than the KPZ values can be generated using this procedure for the Ising, tricritical Ising and 3-state Potts models.Comment: 8 pages, no figure

    Boundary field induced first-order transition in the 2D Ising model: numerical study

    Full text link
    In a recent paper, Clusel and Fortin [J. Phys. A.: Math. Gen. 39 (2006) 995] presented an analytical study of a first-order transition induced by an inhomogeneous boundary magnetic field in the two-dimensional Ising model. They identified the transition that separates the regime where the interface is localized near the boundary from the one where it is propagating inside the bulk. Inspired by these results, we measured the interface tension by using multimagnetic simulations combined with parallel tempering to determine the phase transition and the location of the interface. Our results are in very good agreement with the theoretical predictions. Furthermore, we studied the spin-spin correlation function for which no analytical results are available.Comment: 12 pages, 7 figures, 2 table

    Multicanonical analysis of the plaquette-only gonihedric Ising model and its dual

    Get PDF
    The three-dimensional purely plaquette gonihedric Ising model and its dual are investigated to resolve inconsistencies in the literature for the values of the inverse transition temperature of the very strong temperature-driven first-order phase transition that is apparent in the system. Multicanonical simulations of this model allow us to measure system configurations that are suppressed by more than 60 orders of magnitude compared to probable states. With the resulting high-precision data, we find excellent agreement with our recently proposed nonstandard finite-size scaling laws for models with a macroscopic degeneracy of the low-temperature phase by challenging the prefactors numerically. We find an overall consistent inverse transition temperature of 0.551334(8) from the simulations of the original model both with periodic and fixed boundary conditions, and the dual model with periodic boundary conditions. For the original model with periodic boundary conditions, we obtain the first reliable estimate of the interface tension, 0.12037(18), using the statistics of suppressed configurations

    Macroscopic Degeneracy and order in the 3d plaquette Ising model

    Full text link
    The purely plaquette 3d Ising Hamiltonian with the spins living at the vertices of a cubic lattice displays several interesting features. The symmetries of the model lead to a macroscopic degeneracy of the low-temperature phase and prevent the definition of a standard magnetic order parameter. Consideration of the strongly anisotropic limit of the model suggests that a layered, "fuki-nuke" order still exists and we confirm this with multicanonical simulations. The macroscopic degeneracy of the low-temperature phase also changes the finite-size scaling corrections at the first-order transition in the model and we see this must be taken into account when analysing our measurements.Comment: arXiv admin note: text overlap with arXiv:1412.442

    Multi-overlap simulations of spin glasses

    Get PDF
    We present results of recent high-statistics Monte Carlo simulations of the Edwards-Anderson Ising spin-glass model in three and four dimensions. The study is based on a non-Boltzmann sampling technique, the multi-overlap algorithm which is specifically tailored for sampling rare-event states. We thus concentrate on those properties which are difficult to obtain with standard canonical Boltzmann sampling such as the free-energy barriers F^q_B in the probability density P_J(q) of the Parisi overlap parameter q and the behaviour of the tails of the disorder averaged density P(q) = [P_J(q)]_av.Comment: 14 pages, Latex, 18 Postscript figures, to be published in NIC Series - Publication Series of the John von Neumann Institute for Computing (NIC

    Properties of phase transitions of higher order

    Full text link
    There is only limited experimental evidence for the existence in nature of phase transitions of Ehrenfest order greater than two. However, there is no physical reason for their non-existence, and such transitions certainly exist in a number of theoretical models in statistical physics and lattice field theory. Here, higher-order transitions are analysed through the medium of partition function zeros. Results concerning the distributions of zeros are derived as are scaling relations between some of the critical exponents.Comment: 6 pages, poster presented at Lattice 2005 (Spin and Higgs), Trinity College Dubli

    Exact solutions to plaquette Ising models with free and periodic boundaries

    Get PDF
    An anisotropic limit of the 3d plaquette Ising model, in which the plaquette couplings in one direction were set to zero, was solved for free boundary conditions by Suzuki (Phys. Rev. Lett. 28 (1972) 507), who later dubbed it the fuki-nuke, or "no-ceiling", model. Defining new spin variables as the product of nearest-neighbour spins transforms the Hamiltonian into that of a stack of (standard) 2d Ising models and reveals the planar nature of the magnetic order, which is also present in the fully isotropic 3d plaquette model. More recently, the solution of the fuki-nuke model was discussed for periodic boundary conditions, which require a different approach to defining the product spin transformation, by Castelnovo et al. (Phys. Rev. B 81 (2010) 184303). We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.Comment: v5 - The title is changed to better reflect the contents and the exposition is streamlined. Version accepted for publicatio

    Fluctuation Pressure of a Stack of Membranes

    Full text link
    We calculate the universal pressure constants of a stack of N membranes between walls by strong-coupling theory. The results are in very good agreement with values from Monte-Carlo simulations.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/31
    • …
    corecore