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Abstract

The three-dimensional purely plaquette gonihedric Ising model and its dual are investigated to resolve 
inconsistencies in the literature for the values of the inverse transition temperature of the very strong 
temperature-driven first-order phase transition that is apparent in the system. Multicanonical simulations 
of this model allow us to measure system configurations that are suppressed by more than 60 orders of 
magnitude compared to probable states. With the resulting high-precision data, we find excellent agreement 
with our recently proposed nonstandard finite-size scaling laws for models with a macroscopic degener-
acy of the low-temperature phase by challenging the prefactors numerically. We find an overall consistent 
inverse transition temperature of β∞ = 0.551334(8) from the simulations of the original model both with 
periodic and fixed boundary conditions, and the dual model with periodic boundary conditions. For the orig-
inal model with periodic boundary conditions, we obtain the first reliable estimate of the interface tension 
σ = 0.12037(18), using the statistics of suppressed configurations.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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1. Introduction

The gonihedric Ising model was originally formulated by Ambartzumian and Savvidy [1] as a 
possible lattice discretization of an alternative “linear” action for the string worldsheet in bosonic 
string theory. These early discretizations using triangulations were then translated to plaquette 
surfaces generated as the spin cluster boundaries of classical generalized Ising spin Hamiltonians 
by Savvidy and Wegner [2]. For a recent review, see [3].

The resulting gonihedric Ising model is a generalized three-dimensional Ising model, where 
spins σ, living on a three-dimensional cubic lattice, interact via nearest 〈i, j〉, next-to-nearest 
〈 〈i, j〉 〉 and plaquette interactions [i, j, k, l] and the weights of the different interactions are fine-
tuned so that the area of spin cluster boundaries does not contribute to the partition function, but 
rather their edges and self-interactions. This leads to the family of Hamiltonians

Hκ = −2κ
∑
〈i,j〉

σiσj + κ

2

∑
〈〈i,j〉〉

σiσj − 1 − κ

2

∑
[i,j,k,l]

σiσjσkσl, (1)

where κ parametrizes the self-avoidance of the spin cluster boundaries. The purely plaquette 
Hamiltonian with κ = 0,

H = −1

2

∑
[i,j,k,l]

σiσjσkσl, (2)

allows spin cluster boundaries to intersect without energetic penalty. It has attracted some at-
tention recently, as it displays a strong first-order transition [4] and evidence of glass-like be-
haviour [5] at low temperatures in spite of the absence of quenched disorder.

The strong first-order nature of the transition for the purely plaquette Hamiltonian has meant 
that it has proved difficult to obtain consistent values for the inverse transition temperature. Only 
recently, it was understood that the exponential degeneracy q = 23L [6] in the low-temperature 
phase, for the periodic system living on a cube with linear lattice size L, severely changes the 
finite-size corrections and leads to nonstandard finite-size scaling [7].

First estimates of the inverse transition temperature were given by a mean-field approximation 
that yielded β∞ = 0.325 and early canonical Monte Carlo simulations gave β∞ = 0.50(1) [8]. 
Later, detailed finite-size scaling analysis of Monte Carlo data with fixed boundary conditions 
found β∞ = 0.54757(63) [9]. More recently, another value of 0.510(2), that is apparently com-
patible with the first simulations [8], was suggested by analysing a dual representation of the 
model with periodic boundary conditions which turns out to be an anisotropic Ashkin–Teller 
model [10]. Here, two spins σ, τ live on each vertex of a cubic lattice, with nearest-neighbour 
interactions along the x, y and z-axes,

Hd = −1

2

∑
〈i,j〉x

σiσj − 1

2

∑
〈i,j〉y

τiτj − 1

2

∑
〈i,j〉z

σiσj τiτj . (3)

To resolve these discrepancies, we have conducted multicanonical Monte Carlo simulations 
of the original model and its dual representation. In the remainder of the paper we present the 
results of these simulations and the underlying theory of finite-size scaling at first-order phase 
transitions used in extracting the conclusions.

In Section 2, after first discussing “standard” first-order finite-size scaling behaviour for mod-
els with periodic boundary conditions, we observe that nonstandard first-order finite-size scaling 
behaviour will occur when there is an exponentially large degeneracy of the low-temperature 
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phase, which is the case for both the plaquette Hamiltonian and its dual. The scaling corrections 
for various observables are presented in detail in this case.

In Section 3 we discuss the simulations themselves, for the plaquette Hamiltonian with pe-
riodic boundary conditions, for the dual model with periodic boundary conditions and for the 
plaquette Hamiltonian with fixed boundary conditions. We determine characteristic quantities of 
these systems, such as the specific heat, Binder’s energy parameter, the latent heat and interface 
tension, as well as the inverse temperature of the transition. We find for the first time, with the 
use of the nonstandard scaling relations, a consistent estimate of the inverse critical temperature 
from the plaquette Hamiltonian and its dual with periodic boundary conditions and the plaque-
tte Hamiltonian with fixed boundary conditions. The self-consistency of the simulations is also 
confirmed by extracting various prefactors of scaling corrections both directly from fits and by 
calculation of energy moments.

Finally, in Section 4 we summarize our results for the measured physical quantities in the 
gonihedric model, make some observations on the apparent dependence of the latent heat and 
interface tension on the boundary conditions and conclude the paper with a brief discussion of 
potential further applications of nonstandard first-order finite-size scaling.

2. Finite-size scaling for first-order phase transitions

In spite of the ubiquity of first-order phase transitions [11] it was only relatively recently 
that the initial studies of finite-size scaling for first-order transitions were carried out [12] and 
subsequently pursued further in [13]. Rigorous results for periodic boundary conditions were 
derived in [14,15]. For the discussion of scaling laws under periodic boundary conditions here, 
we will first employ the two-state model of [16] which is capable of correctly reproducing the 
prefactors of the leading contributions. To have this paper reasonably self-contained, we will 
recall the principles and main results in the following. In this model we assume the system spends 
some time in either one of the q ordered phases or in the disordered phase, where transitions 
between the phases are instantaneous and fluctuations within the phases are neglected. Let Wo
denote the fraction of the total time spent in one of the q ordered phases and Wd = 1 − Wo the 
fraction spent in the disordered phase. We associate energies eo and ed with the phases. Under 
these assumptions, the energy moments are simply given by 〈en〉 = Woe

n
o + (1 − Wo)e

n
d . The 

specific heat CV (β, L) = −β2∂e(β, L)/∂β as an expression in terms of these moments becomes

CV (β,L) = Ldβ2(〈e2〉 − 〈e〉2) = Ldβ2Wo(1 − Wo)�e2, (4)

with �e = ed − eo. Varying Wo, we find the maximum

Cmax
V = Ld(β�e/2)2 ≈ Ld

(
β∞�ê/2

)2 (5)

for Wo = Wd = 0.5, where the ordered and disordered peaks of the energy probability density 
have equal weight. Here, we have assumed that β , eo and ed deviate from the infinite-volume 
limit β∞, êo = eo(β

∞) and êd, respectively, only by terms of order 1/Ld .
In close analogy, we can write the Binder parameter in terms of the two-state moments

B(β,L) = 1 − 〈e4〉
3〈e2〉2

= 1 − Woê
4
o + (1 − Wo)ê

4
d

3(Woê2
o + (1 − Wo)ê

2
d)

2
, (6)

from which we can calculate the minimum with respect to the weights at Wo = ê2
d/(ê

2
o + ê2

d), 
such that Wo/Wd = ê2/ê2

o with a value of
d
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Bmin(L) = 1 − 1

12

(
êo

êd
+ êd

êo

)2

. (7)

The free-energy densities, fo and fd, of any one of the ordered phases or the disordered phase 
govern their probability

po ∝ e−βLdfo and pd ∝ e−βLdfd , (8)

and the fraction of time spent in the ordered phases is proportional to qpo. Neglecting exponen-
tially small corrections in the linear lattice size L [14–16], the ratio of the fraction of time spent 
in the respective phases is given by

Wo/Wd � qe−Ldβfo/e−βLdfd . (9)

Expanding the logarithm ln(Wo/Wd) = lnq + Ldβ(fd − fo) around the infinite-volume phase-
transition temperature β∞ leads to

ln(Wo/Wd) = lnq + Ld�ê
(
β − β∞) + . . . , (10)

which after truncation can be solved for the inverse temperatures β . For Wo = Wd = 0.5 we 
find the inverse temperature βeqw, where both peaks of the energy probability density have equal 
weight, and, to leading order, the location βCmax

V of the specific heat maximum,

βCmax
V (L) = βeqw(L) = β∞ − lnq

�êLd
+ . . . . (11)

The minimum of Binder’s parameter at Wo/Wd = ê2
d/ê

2
o is located at the inverse temperature

βBmin
(L) = β∞ − ln(qê2

o/ê
2
d)

Ld�ê
+ . . . . (12)

In spite of its simplicity the model captures the essential features of first-order phase transi-
tions and, importantly for our purposes, correctly predicts the prefactors of the leading finite-size 
scaling corrections for a class of models with a contour representation, such as the q-state Potts 
model, where a completely rigorous theory of scaling also exists [15]. This rigorous theory 
enables the calculation of the coefficients of higher-order terms in a systematic asymptotic expan-
sion in powers of 1/Ld [16,17]. In addition, there are further corrections that decay exponentially 
fast with growing system size [18].

These models for periodic boundary conditions have, up to exponentially small corrections 
in L, a canonical partition function of the form [15]

Z(β,L) = qe−βLdfo(β) + e−βLdfd(β), (13)

allowing a more rigorous derivation of inverse transition temperatures. The inverse temperature 
of equal peak weight then reads [16]

βeqw(L) = β∞ − β∞ lnq

�ŝLd
+ β∞

(
lnq

�ŝLd

)2(
�Ĉ

2�ŝ

)
+O

(
(lnq)3

L3d

)
, (14)

where �ŝ = β∞�ê is the transition entropy and �Ĉ = Ĉd − Ĉo. For the location of the specific-
heat maximum and the minimum of the Binder parameter one finds [16,17]
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βCmax
V (L) = β∞ − β∞ lnq

�ŝLd
+ β∞

(
1

�ŝLd

)2(
�Ĉ

2�ŝ

(
(lnq)2 − 12

) + 4

)

+O
(

(lnq)3

L3d

)
, (15)

βBmin
(L) = β∞ − β∞ ln(qê2

o/ê
2
d)

Ld�ŝ
+ a2

L2d
+O

(
(ln(qê2

o/ê
2
d))

3

L3d

)
, (16)

where the expression for a2 is explicitly known but very complicated [16], and will simplify in 
our special case (see below).

The leading correction to the inverse temperature of equal peak height, βeqh, comes more 
heuristically from a double gaussian approximation of the energy probability density [16],

βeqh(L) = β∞ − β∞ ln(qĈd/Ĉo)

2�ŝL3
+O

(
(ln(qĈd/Ĉo))

2

L6

)
. (17)

Usually, the low-temperature degeneracy q is a constant (like in a q-state Potts model) and 
standard finite-size scaling behaviour at a first-order transition displays a leading contribution 
proportional to the inverse volume L−d . However, for the three-dimensional gonihedric Ising 
model (1), the degeneracy q is exponentially dependent on the linear system size. By construc-
tion, the model shows a highly degenerate ground-state for all parameters κ . In the special case of 
vanishing energetic penalty for self-intersecting spin cluster boundaries, κ = 0, the degeneracy,

q = 23L = e3L ln 2, (18)

is apparent even for finite temperatures [6]. The usual 1/L3 behaviour is therefore transmuted to 
a 1/L2 behaviour [7]. Furthermore, the finite-size scaling corrections to βeqw(L) in (14) and in 
the scaling law (15) for βCmax

V (L) now coincide up to order O(L−4),

βCmax
V (L) ≈ βeqw(L) = β∞ − ln 23L

�êL3
+ �Ĉ

2�ê

(
ln 23L

�ŝL3

)2

+O
(

(lnq)3

L9

)

= β∞ − 3 ln 2

�êL2
+ �Ĉ

2�ê

(
3 ln 2

�ŝL2

)2

+O
(
L−6). (19)

The scaling law for the peak location of Binder’s parameter (16) becomes

βBmin
(L) = β∞ − ln(23Lê2

o/ê
2
d)

�êL3
+ �Ĉ

2�ê

(
ln 23L

�ŝL3

)2

+ . . .

= β∞ − 3 ln 2

�êL2
− ln(ê2

o/ê
2
d)

�êL3
+ �Ĉ

2�ê

(
3 ln 2

�ŝL2

)2

+O
(
L−6), (20)

where we have used the fact that only the contribution to a2 with the highest power of lnq , 
a2 = (lnq/�ŝ)2�Ĉ/2�ê + . . . , contributes to the order given. The leading contribution to 
the finite-size correction is thus also proportional to L−2, and the prefactor of the contribution 
O(L−4) becomes the same as that found for the inverse temperatures of the equal peak weight 
and the peak location of the specific heat. Note that there is, however, an additional correction 
term of O(L−3).

The leading correction to the inverse temperature of equal peak height, βeqh, is now also of 
order O(L−2),

βeqh(L) = β∞ − 3 ln 2 − ln(Ĉd/Ĉo) +O
(
L−4). (21)
�êL2 2�êL3
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The extremal values of the specific heat and Binder’s parameter change with the system size 
according to

Cmax
V (L) =

(
�ŝ

2

)2

L3 + lnq(�Ĉ − �ŝ)

2
+ Ĉd + Ĉo

2
+ . . .

=
(

�ŝ

2

)2

L3 + 3 ln 2(�Ĉ − �ŝ)

2
L + Ĉd + Ĉo

2
+O

(
L−1) (22)

and

Bmin(L) = 1 − 1

12

(
êo

êd
+ êd

êo

)2

+ aL−2 +O
(
L−3). (23)

The prefactor in the first correction for Bmin(L) reads

a =
(

1

β∞

)2 3 ln 2(êd + êo)(Ĉoêd − Ĉdêo)(ê
2
d + ê2

o)

6ê3
d ê

3
o

, (24)

which comes from an even more complicated expression of O(L−3) in the general case [16]. 
Here we have already taken the degeneracy q = 23L into account.

The Taylor series of the energy in the ordered and disordered phases, eo/d, around β = β∞
reads

eo/d(β) = êo/d + ∂eo/d

∂β

∣∣∣∣
β=β∞

(
β − β∞) +O

((
β − β∞)2)

, (25)

where the specific heat of the ordered and disordered phase enters the leading correction. Calcu-
lating the energies at inverse temperature βeqw, the scaling of the energy fulfils

eo/d
(
βeqw) = êo/d + Ĉo/d

(
1

β∞

)2(
βeqw − β∞) +O

((
βeqw − β∞)2)

. (26)

The difference βeqw − β∞ is known from (19), therefore the expression

eo/d
(
βeqw) = êo/d +

(
1

β∞

)2

Ĉo/d
3 ln(2)

�êL2
+O

(
L−4) (27)

shows the finite-size corrections to the energy.
The same change of leading contributions is apparent in the dual model (3), where a similar 

low-temperature phase degeneracy is expected (but, in contrast to the original model, not proven). 
These considerations will also apply to other models with periodic boundary conditions which 
have a degeneracy that depends exponentially on the system size.

For fixed boundary conditions, surface effects play an important role [19]. Here, the inverse 
transition temperature of the gonihedric Ising model is shifted by a leading term of order O(L−1)

for finite lattices of linear lattice size L. Thus in this case we expect

β(L) = β∞ − a1

L
+O

(
L−2) (28)

for the peak locations of both the specific heat and Binder’s parameter.
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3. Simulation results

An effective way of combating supercritical slowing down near first-order phase transitions, 
where canonical simulations tend to get trapped in either the disordered or ordered phases, is to 
use the multicanonical Monte Carlo algorithm [20,21]. At such first-order transitions cooling a 
system down or heating it up makes estimation of the transition temperature inherently difficult 
using standard algorithms due to hysteresis effects. In a multicanonical simulation it is possi-
ble to systematically improve guesses of the energy probability distribution before the actual 
production run by using recursive estimates [22].

The rare states lying between the disordered and ordered phases in the energy histogram are 
then promoted artificially, decreasing the autocorrelation time and allowing the system to oscil-
late more rapidly between phases. Canonical estimators can then be retrieved by weighting the 
multicanonical data to yield Boltzmann-distributed energies. Such reweighting techniques [23]
are very powerful when combined with the multicanonical simulations, allowing the calculation 
of observables over a broad range of temperatures.

3.1. Observables

Standard observables such as the specific heat (4) and Binder’s energy parameter (6) were 
calculated at different temperatures from our data for both the gonihedric Ising model (2) and 
its dual (3). The positions of their peaks, βCmax

V (L) and βBmin
(L) were then determined by the 

reweighting techniques.
Other estimates of the inverse critical temperature are given by βeqw(L) and βeqh(L), where 

the ordered and disordered peaks of the energy probability density p(e) have the same weight or 
height, respectively. In practice, we use reweighting techniques to get an estimator of the energy 
probability densities at different temperatures. βeqw is chosen systematically to minimize

Deqw(β) =
( ∑

e<emin

p(e,β) −
∑

e≥emin

p(e,β)

)2

(29)

where the energy of the minimum between the two peaks, emin, is determined beforehand to 
distinguish between the different phases. The location of the minimum, βeqw, is then used to 
calculate the energy moments of the ordered and disordered phases,

ek
o(L) =

∑
e<emin

ekp
(
e,βeqw)/ ∑

e<emin

p
(
e,βeqw)

,

ek
d(L) =

∑
e≥emin

ekp
(
e,βeqw)/ ∑

e≥emin

p
(
e,βeqw)

, (30)

where eo/d(L) = e1
o/d(L) is the energy in the respective phases, and their difference is an esti-

mator of the latent heat �e(L) = ed(L) − eo(L). Also, the second and first moments combine to 
give the specific heat of the ordered and disordered phases,

Co/d(L) = β2Ld
(
e2

o/d(L) − (
e1

o/d(L)
)2)

. (31)

To find the inverse transition temperature where both phases have equal height we minimize

Deqh(β) =
(

max
{
p(e,β)

} − max
{
p(e,β)

})2
, (32)
e<emin e≥emin
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Fig. 1. The integrated autocorrelation time τ int in units of sweeps for the original model with periodic boundary condi-
tions (blue stars; left axis) over the linear lattice size L. The dashed and dotted curves are fits with a power law or an 
exponential law for lattices sizes L ≥ 16. On the right axis, with green pluses, the total number of sweeps n divided by 
the volume is shown. (For interpretation of the colours in this figure, the reader is referred to the web version of this 
article.)

as a function of β . The probability density p(e, βeqh) itself at βeqh is also of interest since one 
can make use of it to extract the reduced interface tension

σ(L) = 1

2L2
ln

(
max{p(e,βeqh)}
min{p(e,βeqh)}

)
, (33)

for periodic boundary conditions. This characteristic quantity of first-order phase transitions is 
almost impossible to extract reliably from canonical Metropolis simulations, since getting rea-
sonable statistics on the suppressed states is very hard. Multicanonical simulations, on the other 
hand, are perfectly tailored for measurements of such rare events.

3.2. Original plaquette model with periodic boundary conditions

The quality of the simulations for the original plaquette model (2) with periodic boundary 
conditions can be judged by the integrated autocorrelation time τ int and the number of sweeps in 
Fig. 1. Here, τ int has been determined with a self-consistent cutoff at 6τ int and the error comes 
from the known formula for this algorithm [24], ετ int = (τ int)3/2( 24

n
)1/2, where n is the number of 

measurements (= number of sweeps when performing measurements every sweep). We would 
expect that the integrated autocorrelation time with perfect multicanonical weights should in 
principle increase linearly with the volume, τ int ∝ L3.

Error-weighted nonlinear least-squares fits of a power law, τ int ∝ Lα , to the actual measured 
integrated autocorrelation times yield much larger exponents α ≈ 6.40(17) that vary a bit around 
6.0 depending on the lattice sizes included in the fits. Also for those fits with acceptable χ2 ≈ 1
that only include lattices with size L ≥ 16, fits to an exponential growth with L are of compara-
ble quality, see Fig. 1. With least-squares fits and no proper model testing, we cannot distinguish 
between the two alternatives [25]. In any case, we find that the autocorrelation time grows signif-
icantly faster than expected, an effect that may be attributed to free-energy barriers. Such hidden 
barriers appear for instance in droplet condensation [26], whose analog with the gonihedric Ising 
model is, however, still unclear.
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Fig. 2. Best fits up to order O(L−4) obtained for the original model with periodic boundary conditions (cf. Table 2) using 
the (finite lattice) peak locations for the specific heat Cmax

V
, Binder’s energy parameter Bmin; or inverse temperatures 

βeqw and βeqh, where the two peaks of the energy probability density are of same weight or have equal height, respec-

tively. The values for βeqw and βCmax
V are indistinguishable in the plot. The inset shows the energy probability density 

p(e) over e = E/Ld at βeqh for lattices with linear length L ∈ {9, 10, . . . , 27}.

For each lattice, we performed a maximum number of nmax = 217 L3 = 131 072 L3 sweeps 
with an upper bound on the computer time of around 500 hours of real time for each lattice 
size. All lattices with size L ≤ 20 finished the desired number of sweeps, the larger lattices 
were aborted after 500 hours and collected correspondingly less statistics. The ratio n/τ int is 
a measure for the number of effectively uncorrelated data. Although the autocorrelation time 
increases dramatically with the system size, the simulation of the largest lattice of V = 273

spins still effectively flipped more than 250 times between the two phases during the simulation. 
This is remarkable, given that rare states were suppressed by more than 60 orders of magnitude 
compared to the most probable states (see the inset of Fig. 2).

From our multicanonical data, we have extracted the resulting quantities of interest for differ-
ent lattice sizes and listed them in Table 1, where errors have been extracted by jackknife analysis 
using 20 blocks for each lattice size [27].

We find that the inverse temperatures of the specific-heat maximum βCmax
V and of equal peak 

weights βeqw fall nearly together for all lattice sizes. This is accounted for by the fact that the 
higher-order corrections of order O(L−4) in the scaling law (19) for these quantities collapse 
due to the exponential degeneracy of the low-temperature phase to induce the same prefactor.

Least-squares fits to the data in Table 1 according to the laws in Section 2 have been con-
ducted. We have left out the smaller lattices systematically for each fit, until a goodness-of-fit 
value of at least Q = 0.5 was found for each observable individually. The same protocol was 
employed earlier [7] for a reduced time series, where only every L3-th measurement was used. 
There we were not challenging the prefactors of higher-order corrections so the reduced time 
series was sufficient. We list all the fit parameters obtained for both the full time series and the 
reduced one in Table 2 along with the quality-of-fit parameters Q and the degrees of freedom 
left. The inverse transition temperatures in the thermodynamic limit are effectively identical and 
do not depend on whether we use the reduced or the full dataset or on the precise final averaging 
procedure. A graphical representation of the best fits is given in Fig. 2.
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, Binder’s energy parameter Bmin, with 
 density have equal heights and weights for finite lattices 
and their difference as eo, ed and �e. The infinite lattice 
ints used for fits with only leading order correction (lo). 
 dark grey.

eo ed �e

−1.43921(13) −0.56223(14) 0.87698(11)

−1.44791(5) −0.56529(8) 0.88262(8)

9) −1.452764(28) −0.57011(7) 0.88265(7)

−1.455896(28) −0.57525(5) 0.88065(4)

−1.458205(19) −0.57996(5) 0.87824(5)

−1.459850(21) −0.58424(5) 0.87561(5)

4) −1.461138(15) −0.58795(4) 0.87319(4)

−1.462154(20) −0.591175(23) 0.870979(30)

−1.462961(8) −0.593953(30) 0.869009(29)

2) −1.463630(8) −0.596392(28) 0.867238(24)

−1.464179(9) −0.598459(27) 0.865720(21)

−1.464630(9) −0.600290(25) 0.864339(21)

5) −1.465009(6) −0.601844(17) 0.863165(16)

0) −1.465339(9) −0.603216(21) 0.862124(15)

−1.465615(6) −0.604412(15) 0.861203(16)

−1.465856(7) −0.605491(23) 0.860365(20)

−1.466076(9) −0.606468(24) 0.859607(21)

−1.466270(6) −0.607270(23) 0.858999(20)

−1.466413(11) −0.60798(4) 0.85844(4)

) −1.466578(13) −0.60865(4) 0.857927(28)

) −1.468500(11) −0.61701(7) 0.85148(5)

0.56 0.56 0.59
−1.468373(12) −0.61771(6)

0.63 0.59
Table 1
Resulting quantities for the gonihedric Ising model (2) with periodic boundary conditions: extremal values for the sp
their respective pseudo-critical inverse temperatures β , and inverse temperatures where peaks of the energy probability
with linear length L. The finite-lattice interface tension is listed as σ , the energy of the ordered and disordered phases 
limits are listed as parameters of fits whose goodness-of-fit value Q is given. Highlighted in light grey are the data po
Additional data points used for fitting with subleading corrections (so) up to and including order O(L−4) are marked in

L β
Cmax

V Cmax
V

βBmin
Bmin βeqw βeqh σ

08 0.518228(26) 27.061(7) 0.513850(27) 0.25211(16) 0.518244(26) 0.514007(23) 0.05659(6)

09 0.524636(24) 39.611(6) 0.521626(24) 0.26024(14) 0.524644(24) 0.521769(24) 0.06240(5)

10 0.529322(18) 55.068(7) 0.527159(19) 0.27023(12) 0.529327(18) 0.527463(18) 0.067756(2
11 0.532894(13) 73.766(7) 0.531286(13) 0.27998(7) 0.532897(13) 0.531705(12) 0.07305(4)

12 0.535696(13) 96.094(8) 0.534467(13) 0.28847(8) 0.535698(13) 0.534965(13) 0.07804(4)

13 0.537902(12) 122.315(10) 0.536941(12) 0.29593(8) 0.537903(12) 0.537383(12) 0.08285(4)

14 0.539662(10) 152.801(12) 0.538897(10) 0.30221(6) 0.539663(10) 0.539297(9) 0.087156(2
15 0.541128(9) 187.897(12) 0.540508(9) 0.30756(4) 0.541128(9) 0.540853(9) 0.09105(4)

16 0.542329(10) 227.917(10) 0.541820(10) 0.31207(5) 0.542329(10) 0.542114(9) 0.09430(4)

17 0.543326(8) 273.174(11) 0.542903(8) 0.31597(5) 0.543326(8) 0.543151(8) 0.096981(2
18 0.544181(9) 324.070(9) 0.543825(9) 0.31923(4) 0.544181(9) 0.544035(9) 0.09928(4)

19 0.544904(10) 380.852(10) 0.544602(10) 0.32210(4) 0.544904(10) 0.544781(10) 0.10128(4)

20 0.545510(5) 443.910(12) 0.545252(5) 0.324501(26) 0.545511(5) 0.545403(5) 0.102911(2
21 0.546044(7) 513.571(12) 0.545821(7) 0.326601(29) 0.546044(7) 0.545952(7) 0.104440(2
22 0.546500(6) 590.141(19) 0.546306(6) 0.328422(24) 0.546500(6) 0.546420(6) 0.10576(4)

23 0.546914(8) 673.971(21) 0.546745(8) 0.33005(4) 0.546914(8) 0.546843(8) 0.10702(5)

24 0.547270(9) 765.339(21) 0.547121(9) 0.33152(4) 0.547270(9) 0.547207(9) 0.10819(7)

25 0.547584(9) 864.753(27) 0.547452(9) 0.33271(4) 0.547584(9) 0.547528(9) 0.10901(5)

26 0.547856(14) 972.36(5) 0.547739(14) 0.33376(6) 0.547856(14) 0.547805(14) 0.10997(9)

27 0.548099(14) 1088.54(4) 0.547994(14) 0.33475(6) 0.548099(14) 0.548053(14) 0.11066(10

lo 0.551233(10) 0.055072(4)L3 0.551350(6) 0.34729(7) 0.551233(10) 0.551277(5) 0.12037(18
Q 0.54 0.35 0.72 0.50 0.54 0.90 0.38
so 0.551331(8) 0.551340(27) 0.551331(8) 0.55134(6)

Q 0.95 0.92 0.95 0.93
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Table 2
Resulting parameters of the best fits to the extremal points β for the specific heat Cmax

V
, Binder’s energy parameter 

Bmin; or inverse temperatures βeqw and βeqh to laws of the form β(L) = β∞ + p2/L2 + p3/L3 + p4/L4. Parameters 
pi not used in the specific fit are marked with –. The error-weighted average over all four inverse temperatures are listed 
as βav, whereas βav

w/o eqw is the average, where βeqw is left out because it is strongly correlated with βCmax
V and would 

effectively weight this value twice.

O Eq. Lmin β∞ p2 p3 p4 Q dof

reduced time series, linear fit

β
Cmax

V (L) (19) 16 0.551221(11) −2.281(5) – – 0.54 10

βBmin
(L) (20) 13 0.551347(7) −2.4373(24) – – 0.79 13

βeqw(L) (19) 16 0.551221(11) −2.281(5) – – 0.54 10
βeqh(L) (19) 5 0.551331(21) −2.366(6) – – 0.96 21

βav 0.551291(7) 1.313527(12)
βav

w/o eqw 0.551311(7) 1.313493(12)

full time series, linear fit

β
Cmax

V (L) (19) 17 0.551233(10) −2.287(5) – – 0.54 9

βBmin
(L) (20) 13 0.551350(6) −2.4389(19) – – 0.72 13

βeqw(L) (19) 17 0.551233(10) −2.287(5) – – 0.54 9
βeqh(L) (19) 12 0.551277(5) −2.3478(16) – – 0.90 14

βav 0.551293(5) 1.313524(9)
βav

w/o eqw 0.551300(5) 1.313511(9)

full time series, up to O(L−3)

βBmin
(L) (20) 11 0.551403(14) −2.494(11) 0.65(12) – 0.59 14

βeqh(L) (19) 12 0.551271(17) −2.342(15) 0(0.2) – 0.87 13

βav 0.551269(10) 1.313565(17)
βav

w/o eqw 0.551288(10) 1.313532(17)

full time series, up to O(L−4)

β
Cmax

V (L) (19) 9 0.551331(8) −2.371(4) – 16.9(4) 0.95 16

βBmin
(L) (20) 9 0.551340(28) −2.39(4) −1.6(8) 13(4) 0.92 15

βeqw(L) (19) 9 0.551331(8) −2.371(4) – 17.0(4) 0.95 16
βeqh(L) (19) 12 0.55134(6) −2.47(11) 2.8(2.4) −18(15) 0.95 12

βav 0.551332(8) 1.313457(14)
βav

w/o eqw 0.551332(8) 1.313456(14)

Since the inverse temperatures βeqw and βCmax
V are obviously strongly correlated, we leave out 

the former and average over βCmax
V , βBmin

, and βeqh, neglecting cross-correlations [28] between 
those and taking the smallest contributing error for the final estimate. Our best estimate of the 
inverse transition temperature is then given by

β∞ = 0.551332(8) original model, periodic bc, (34)

which accounts for the higher-order scaling corrections up to O(L−4).
Although the inverse transition temperatures do not change, we employ the full data set. The 

reason is that the error on βeqh becomes smaller for the time series that uses the full, correlated 
data set. This is attributed to the fact that the observable relies on the statistics in single bins of the 
energy histogram, which in total becomes smoother when using more, correlated measurements. 
The same argument is valid for the calculation of the interface tension (33), for which the best fit 
with corrections of order O(L−2) yields a value of
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Table 3
Quality and resulting quantities of the canonical simulations. In the time series of nmeas = 1 048 576 measurements we 
found autocorrelation times τ < 7 (in units of measurements), leading to approximately n uncorrelated measurements. 
The energy êo/d and the specific heat Ĉo/d in the different phases have been measured by preparing two independent 
systems for each respective phase at inverse temperature β = 0.5513. We give the error-weighted average over lattices 
L ≥ 32, where the dependence on the lattice size is smaller than the statistical error. The last line gives infinite-volume 
limits from the multicanonical simulations for comparison.

L n êo êd �ê Ĉo Ĉd �Ĉ

16 149 796 −1.468406(29) −0.61804(13) 0.85036(21) 0.1645(5) 0.861(4) 0.696(6)
32 174 762 −1.468362(10) −0.61741(4) 0.85095(6) 0.1645(6) 0.8464(29) 0.682(5)
48 149 796 −1.468360(6) −0.617382(19) 0.850978(30) 0.1658(5) 0.8445(27) 0.679(5)
64 174 762 −1.468367(6) −0.617401(15) 0.850966(24) 0.1656(6) 0.847(4) 0.681(6)

average (L ≥ 32) −1.468364(4) −0.617396(11) 0.850968(18) 0.16534(30) 0.8458(18) 0.6805(27)
multicanonical −1.468373(12) −0.61771(6) 0.85148(5) 0.16414(15) 0.8410(12) 0.6769(17)

σ̂ = 0.12037(18) original model, periodic bc. (35)

Moments of the energy in the pure ordered and disordered phases are also expected to become 
more accurate using the full data set, since autocorrelation times in the pure phases are then 
significantly smaller than τ int for the full energy range (see below). By fitting the scaling law (27)
to these moments, one obtains the latent heat in the infinite-volume limit,

�ê = 0.85148(5) original model, periodic bc. (36)

Taking a careful look at the scaling laws in Section 2, we find that the prefactors of the scaling 
corrections only depend on the moments of the energy or their differences. We have two methods 
at hand to test the self-consistency of our simulations. Firstly, since the statistics of the observ-
ables are very high, we can retrieve the prefactors of the corrections as parameters of (nonlinear) 
least-squares-fits with all corrections up to and including O(L−4). Secondly, from multicanoni-
cal simulations we get estimators (30) of the energy moments, allowing a direct computation of 
those prefactors.

In addition, we carried out independent canonical simulations for the original model under pe-
riodic boundary conditions for very large lattices. The goal was to get independent measurements 
of the moments of the energy in the ordered and disordered phases. Here we prepared the system 
in the appropriate phase and performed the simulations at a fixed temperature β = 0.5513, near 
the transition temperature, exploiting the fact that in canonical simulations, for large lattices, flips 
between the two phases are extremely unlikely. Of course, this was only possible after having 
determined the transition temperature with high accuracy by the multicanonical simulations.

The quality of the canonical measurements and estimators on the energy and the specific heat 
are summarized in Table 3. The autocorrelation times within the phases are significantly smaller, 
because the system does not traverse suppressed, improbable states between the phases. The 
statistical error has again been retrieved by jackknife analysis. For lattices with size L ≥ 32, 
physical quantities indicate no further dependence on the lattice size within the statistical error. 
Therefore we can safely take the error-weighted averages over energy moments and their differ-
ences for those lattices. The multicanonical and the canonical estimates of energetic moments 
agree astonishingly well.

With use of the energy moments from both simulations, we can challenge the prefactors in 
the finite-size scaling laws numerically by comparing the numerical values for the fit parame-
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Table 4
Resulting prefactors of the finite-size scaling corrections of the original model, retrieved by fitting the ansatz, compared 
to direct calculations from estimators for the energy êo/d and specific heat Ĉo/d of the ordered and disordered phases. In 
the multicanonical simulations these moments were determined by finite-size scaling of eo/d(βeqw(L)), Co/d(βeqw(L)); 
and in the canonical case by measuring time series directly at β = 0.5513 � β∞.

Input �ê
3 ln(2)

�ê

2 ln(êo/êd)

�ê

ln(Ĉd/Ĉo)

2�ê
Bmin

L→∞
fit on Cmax

V
(L) 0.85130(7) – – – –

fit on Bmin(L) – – – – 0.34729(7)

fit on β
Cmax

V (L) 0.8771(14) 2.371(4) – – –

fit on βBmin
(L) 0.871(14) 2.39(4) 1.6(8) – –

fit on βeqw(L) 0.8770(14) 2.371(4) – – –
fit on βeqh(L) 0.84(4) 2.47(11) – 2.8(2.4) –

fit on β
Cmax

V − βBmin
– – 2.03469(7) – –

fit on β
Cmax

V − βeqh – – – 0.892(14) –

energy moments from simulations . . .
. . . multicanonical 0.85148(5) 2.44215(15) 2.03649(27) 0.9594(10) 0.347(4)

. . . canonical 0.850968(18) 2.44362(6) 2.03625(6) 0.9591(16) 0.34723(9)

ters to the theoretically expected prefactors in terms of the energy moments. The results of this 
cross-check are collected in Table 4.

Employing the scaling relation for the specific-heat maximum (22), we can calculate �ê from 
the fit parameter of the leading contribution. Using our estimate of β∞ = 0.551332(8), we get 
�ê = 0.85130(7), very close to our estimate 0.850968(18) from the moments of the canonical 
simulations. The leading correction to the specific-heat ansatz (22) has a prefactor which com-
putes to 0.2197(17) from the canonical moments. The fits find 0.17(6), which is compatible, if 
not quite accurate.

The minimum of the Binder parameter (23) for the infinite lattice is found to be 0.34729(7)

from the direct fit of our multicanonical data which agrees within error bars with 0.34723(9)

from the canonical and 0.347(4) from the multicanonical energy moments. The first correction 
in Eq. (24) yields a value of −9.195(14) when inserting the energy moments from the multi-
canonical simulation. The fits find −9.12(4) which is very close.

The coefficient of the leading correction apparent for all inverse temperatures, p2 =
3 ln(2)/�ê, agrees reasonably well for the fits on βBmin

and βeqh (cf. Table 4). The fits on 
βeqw and βCmax

V yield a slope of 2.371(4) which within error bars is slightly off from the value 
of our best estimate of 2.44362(6) from the energy moments. The relative error between the two 
values is very small though, around 3%, which is acceptable given that the leading contribution 
probably accounts for the omitted higher-order contributions with different sign and that we have 
neglected all exponential corrections.

The second leading correction of order O(L−3) of βBmin
has a prefactor of the form 

2 ln(êo/êd)/�ê, which we expect to have a value of 2.03625(6) from the energy moments. The 
corrections of fourth order to βBmin

, βCmax
V and βeqw are supposed to be identical from the an-

alytical expansion in Section 2. The fits of the inverse temperatures βCmax
V and βeqw in Table 2

suggest a value around 17 for the O(L−4) contribution. For the lattice sizes accessible to the 
multicanonical approach, this is of the same absolute order of magnitude but with different sign 
compared to the third-order contribution. Therefore they should, in principle, compensate each 
other. This is reflected by the fact that the second-order contribution p2 of βBmin

is closest to 
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the expected one. In accordance, fitting the observable to the law β∞ + p2/L
2 + p3/L

3 gives a 
prefactor p3 = 0.65(12) with the wrong sign compared to the theoretical prediction (20), com-
pensating the next contribution. We therefore also looked at the fit including the fourth term of 
order O(L−4). Not taking the explicit values too seriously, we find p3 = −1.6(8), p4 = 13(4), 
which reflects qualitatively the compensation of those contributions for our lattice sizes at hand. 
Overall, we must conclude that least-squares fitting cannot be pushed any further given our statis-
tics.

The observation that βCmax
V and βBmin

have the same O(L−4) contribution can be exploited 
(implicitly also making use of the cross-correlations) by looking at their difference. Here, we 
expect from (19) and (20) a remainder of 2 ln(êo/êd)/L

3�ê + O(L−5) for the scaling. In fact, 
fitting the difference gives a prefactor 2.03469(7), in excellent agreement with 2.03625(6) from 
the formula, where the relative error between the two is less than 0.1%.

The difference βCmax
V − βeqh should give the third correction to βeqh, which reads p3 =

ln(Ĉd/Ĉo)/2�ê. The fit yields 0.892(14) with Q = 0.98 and 8 degrees of freedom left, which 
differs from 0.9594(10) by about 7%.

Finally, we can also compare the numerical values for the correction to the energies via (27). 
For êo, we find a prefactor of 1.329(5) from the specific heat Ĉo, compared to the value of 
1.397(5), for êd a value of 6.80(3) compared to 6.09(4), which is roughly 10% off.

The overall consistency of our results is very good, given that we neglected all exponential 
corrections. No estimates for the prefactors differ by more than 10%, and the various estimates 
of the inverse transition temperature are insensitive to the actual fitting protocol we use. This 
clearly demonstrates that the first correction terms are properly predicted by the simple two-state 
model even in the case of models with an exponential degeneracy of the low-temperature phase.

The earlier canonical Monte Carlo simulations of the original plaquette model yielded values 
of β∞ = 0.50(1) [8] and more recently canonical simulations of the dual model (3) gave β∞ =
0.510(2) [10]. Another previous estimate for the infinite-lattice inverse transition temperature, 
reported by Baig et al. [9] from canonical simulations using fixed boundary conditions, β∞ =
0.54757(63), is much closer to the results here.

We therefore measured the inverse transition temperature again using multicanonical simula-
tions for both the dual model (3) under periodic boundary conditions and the original model (2)
with fixed boundary conditions. We resolve those inconsistencies, as we show in the following.

3.3. Dual model with periodic boundary conditions

For the dual model, we performed a number of nmax = 4 ×106 sweeps and took measurements 
every sweep for even lattice sizes up to L = 24. The inverse temperatures of the dual model were 
fitted to laws with the leading correction of order O(L−2), which should be well covered by our 
data. The best fits on the inverse temperatures are shown in Fig. 3, where we used the data in 
Table 5 that also lists the other quantities of interest.

Since the inverse temperatures βeqw and βCmax
V are again obviously strongly correlated, we 

leave out the former and average over βCmax
V , βBmin

, and βeqh, neglecting cross-correlations [28]
between those. We then find the error weighted average,

β∞
dual = 1.31328(12) dual model, periodic bc, (37)

for the inverse transition temperature. The error is again taken as the smallest error of the con-
tributing estimates.
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Fig. 3. Best fits obtained for the dual model with periodic boundary conditions using the (finite lattice) peak locations 
for the specific heat Cmax

V
, Binder’s energy parameter Bmin; or inverse temperatures βeqw and βeqh, where the two 

peaks of the energy probability density are of same weight or have equal height, respectively. The inset shows the energy 
probability density p(e) over e = E/Ld at βeqh for lattices of linear size L ∈ {12, 14, . . . , 24}.

The temperature β∞
dual of the dual model is related to the temperature in the original model, 

β∞, by the duality transformation

β∞ = − ln

(
tanh

(
β∞

dual

2

))
. (38)

Applying standard error propagation, we retrieve a value of

β∞ = 0.55143(7) from duality, periodic bc (39)

for the original model. This agrees very well with 0.551 332(8), obtained from the direct sim-
ulation, considering that higher-order corrections in the dual model are omitted and additional 
exponential corrections [15,16,18] in the finite-size scaling were ignored completely for both 
models.

We argue that the earlier estimates of the transition temperature were clearly hampered by 
strong hysteresis effects. Apart from the locations of the hysteresis branches being cooling-rate 
dependent, it is hard to estimate the transition temperature reliably from their locations. This is 
illustrated in Fig. 4, where the multicanonical data of the dual model is located between the two 
hysteresis branches. Such effects are very difficult to tackle using canonical Monte Carlo data, 
as already remarked by the authors of Ref. [10].

For the interface tension (33) of the dual model we find σ = 0.1214(13). This value agrees 
very well with the interface tension of the original model, σ = 0.12037(18), which raises inter-
esting questions about the duality of the model.

3.4. Original plaquette model with fixed boundary conditions

The remaining open question is the difference between our inverse transition temperature 
compared to the value in the same model under fixed boundary conditions. In the thermodynamic 
limit, we expect a system to be independent of its boundary conditions, since the boundaries grow 



M
.M

ueller
etal./N

uclear
P

hysics
B

888
(2014)

214–235
229

th their respective pseudo-critical inverse temperatures β , 
s with linear length L. The finite-lattice interface tension 
ark the values used for fitting, so that the goodness-of-fit 

eo ed �e

) −1.303(26) −0.891(21) 0.412(6)
) −1.3329(4) −0.86898(28) 0.46395(30)
) −1.3476(4) −0.86823(24) 0.4794(4)
) −1.35585(30) −0.87042(19) 0.48544(25)
) −1.36106(18) −0.87238(14) 0.48868(22)
) −1.36412(17) −0.87451(13) 0.48961(16)
3) −1.36657(13) −0.87589(15) 0.49067(18)

−1.36826(20) −0.87691(13) 0.49136(16)
1) −1.36945(14) −0.87796(11) 0.49149(14)

3) −1.37644(21) −0.88227(19) 0.49402(26)
0.63 0.54 0.27
Table 5
Simulation results for the dual model (3): extremal values for the specific heat Cmax

V
, Binder’s energy parameter Bmin, wi

and inverse temperatures where peaks of the energy probability density have equal heights and weights for finite lattice
is listed as σ , the energy of the ordered and disordered phases and their difference as eo, ed and �e. Light grey cells m
parameter Q > 0.5. If Q < 0.5 for all fits, we took that one with the largest Q.

L β
Cmax

V Cmax
V

βBmin
Bmin βeqw βeqh σ

08 1.25788(22) 37.26(11) 1.25394(22) 0.61158(15) 1.2577(11) 1.25891(28) 0.0232(4
10 1.27493(21) 89.34(12) 1.27304(21) 0.60056(9) 1.27488(21) 1.27557(29) 0.0412(5
12 1.28544(22) 165.62(25) 1.28437(22) 0.59735(10) 1.28543(22) 1.28577(21) 0.0574(7
14 1.29265(20) 271.57(30) 1.29198(20) 0.59642(7) 1.29264(20) 1.29283(20) 0.0715(7
16 1.29717(15) 412.9(4) 1.29673(15) 0.59601(7) 1.29717(15) 1.29730(17) 0.0829(7
18 1.30063(16) 592.6(5) 1.30032(16) 0.59616(5) 1.30063(16) 1.30068(21) 0.0911(7
20 1.30308(18) 819.0(5) 1.30286(18) 0.59613(6) 1.30308(18) 1.30312(15) 0.0974(1
22 1.30478(15) 1095.5(9) 1.30461(15) 0.59613(4) 1.30478(15) 1.30483(11) 0.101(4)
24 1.30625(9) 1425.8(9) 1.30612(9) 0.59626(5) 1.30625(9) 1.30626(11) 0.1044(1

∞ 1.31330(15) 0.10511(12)L3 1.31333(12) 0.59636(8) 1.31330(15) 1.31318(16) 0.1214(1
Q 0.58 0.48 0.58 0.18 0.52 0.66 0.99
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Fig. 4. Strong hysteresis effects in the dual gonihedric Ising model with periodic boundary conditions. The linear lattice 
size is L = 14 for comparison with Fig. 10 of Ref. [10]. One can see that heating the system up (decreasing the inverse 
temperature β) or cooling it down (increasing β) can lead to strong hysteresis effects in the energy. Our multicanonical 
data lies in between both branches of the hysteresis curve, but not in the centre, as one may heuristically assume.

like a surface, whereas the system size grows with the volume. We therefore reinvestigated the 
model (2) using the multicanonical algorithm for such fixed boundary conditions.

For our simulations we enclosed L3 free spins in a larger cube with frozen outer planes, so the 
whole system contained (L + 2)3 spins. Our results are listed in Table 6. We performed linear 
regression on the peak locations β(L) of the specific heat and Binder’s parameter according to 
the law

β∞ = β(L) + a1

L
+ a2

L2
(40)

that was also used by Baig et al. [9], and fitted the inverse temperatures. The statistical errors 
of the constant a2 turned out to be of the same order as the value itself, therefore we set a2 = 0
for the fits in Table 6, intentionally neglecting the contribution O(L−2). The best fits and the 
energy probability density are shown in Fig. 5 and the weighted average of inverse transition 
temperatures is given by:

β∞ = 0.55138(5) original model, fixed bc. (41)

This estimate of the inverse transition temperature is thus in excellent agreement with the 
other results obtained here from multicanonical simulations with periodic boundary conditions 
for the gonihedric Ising model β∞ = 0.551332(8) and the dual model β∞ = 0.55143(7).

Direct comparison to Ref. [9] shows that while inverse transition temperatures are reproduced, 
the extremal values of observables are not. The following observations may help to clarify the 
deviations. The authors of Ref. [9] simulated the system by applying periodic boundary condi-
tions and fixing one plane parallel to the xy-, yz- and zx-planes each. If their simulation box 
consisted of a total number of L̂3 spins, they simulated (L̂ − 1)3 free spins. Thus our data with 
lattices of linear length L has to be compared to their data with L̂ = L + 1. Also, their specific 
heat and magnetic susceptibility χ̂ = βL̂−d(〈M2〉 − 〈M〉2) have to be multiplied by a factor of 
(L + 1)3/L3 to be comparable with our normalization, since these quantities are proportional to 
the inverse system volume. Here, M = ∑

i σi is the total magnetization, which for fixed boundary 
conditions is a well defined order parameter.
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 pseudo-critical inverse temperatures β for finite lattices 
measurements were taken. Errors have been calculated 

eo ed �e

−1.67(5) −1.29(6) 0.387(7)
−1.65(4) −1.28(5) 0.379(10)
−1.623(21) −1.230(29) 0.394(9)

) −1.62(4) −1.21(6) 0.410(20)
3) −1.625(9) −1.192(19) 0.433(11)
4) −1.6230(7) −1.1654(25) 0.4575(27)
) −1.620(8) −1.129(17) 0.490(9)
1) −1.612(14) −1.104(28) 0.508(14)
) −1.6108(5) −1.080(4) 0.531(4)
0) −1.6046(5) −1.0664(27) 0.5382(25)
9) −1.59885(24) −1.0487(28) 0.5501(28)
5) −1.59286(27) −1.0311(24) 0.5618(24)
3) −1.58807(27) −1.0248(30) 0.5633(29)
26) −1.5828(4) −1.0106(27) 0.5722(28)
2) −1.57837(20) −1.0024(26) 0.5759(26)
26) −1.57402(20) −0.9920(27) 0.5820(26)
) −1.57031(14) −0.9864(28) 0.5839(28)
0) −1.56641(24) −0.9750(18) 0.5914(17)
1) −1.56259(18) −0.9670(20) 0.5956(20)
4) −1.55980(25) −0.9656(20) 0.5942(20)
) −1.55660(11) −0.9544(28) 0.6022(28)

−1.5538(9) −0.953(6) 0.601(7)

) −1.4782(27) −0.790(4) 0.694(4)
0.49 0.73 0.50
Table 6
Extremal points of the gonihedric Ising model (2) for the specific heat Cmax

V
, Binder’s energy parameter Bmin, and the

with linear length L contained in a box with fixed boundary conditions. For each lattice size, a number of nprod = 106

with jackknife error estimation using 20 blocks.

L β
Cmax

V Cmax
V

βBmin
Bmin βeqw βeqh σ

08 0.44699(14) 5.29(4) 0.44233(13) 0.63030(26) 0.4475(18) 0.4479(8) 0(0.002)
09 0.45794(13) 7.63(8) 0.45488(14) 0.6305(4) 0.4594(12) 0.4577(11) 0(0.003)
10 0.46715(15) 11.08(12) 0.46510(16) 0.6293(5) 0.4678(6) 0.46683(26) 0(0.003)
11 0.47465(14) 15.81(14) 0.47323(14) 0.6273(4) 0.4752(5) 0.47403(25) 0.0044(8
12 0.48097(14) 22.70(26) 0.47995(14) 0.6234(6) 0.48136(19) 0.4803(4) 0.0060(1
13 0.48629(9) 31.56(30) 0.48552(9) 0.6197(6) 0.48653(9) 0.48566(9) 0.0072(1
14 0.49086(8) 43.7(5) 0.49027(9) 0.6146(7) 0.49099(11) 0.49020(27) 0.0090(7
15 0.49483(13) 56.8(8) 0.49435(13) 0.6116(9) 0.49490(17) 0.49429(12) 0.0097(1
16 0.49825(11) 75.2(8) 0.49786(11) 0.6059(8) 0.49830(11) 0.49778(10) 0.0119(4
17 0.50126(7) 92.6(8) 0.50093(7) 0.6043(7) 0.50129(7) 0.50090(19) 0.0125(2
18 0.50410(6) 115.3(11) 0.50383(6) 0.6008(8) 0.50412(6) 0.50381(24) 0.0135(1
19 0.50648(8) 141.9(12) 0.50625(8) 0.5969(8) 0.50649(8) 0.50620(14) 0.0147(1
20 0.50866(10) 167.3(16) 0.50846(10) 0.5963(10) 0.50867(10) 0.50841(12) 0.0156(1
21 0.51063(8) 200.7(19) 0.51046(8) 0.5930(9) 0.51064(8) 0.51039(7) 0.01706(
22 0.51258(6) 235.1(21) 0.51243(6) 0.5914(9) 0.51259(6) 0.51237(5) 0.0173(1
23 0.51433(7) 275.6(24) 0.51420(7) 0.5889(10) 0.51433(7) 0.51415(7) 0.01905(
24 0.51586(6) 317(4) 0.51574(6) 0.5879(11) 0.51586(6) 0.51568(6) 0.0193(6
25 0.51728(7) 368.6(21) 0.51718(7) 0.5847(7) 0.51729(7) 0.51716(6) 0.0200(1
26 0.51853(6) 422.2(28) 0.51843(6) 0.5827(8) 0.51853(6) 0.51837(15) 0.0207(1
27 0.51985(7) 472(4) 0.51977(7) 0.5830(8) 0.51985(7) 0.51971(6) 0.0210(1
28 0.52084(6) 543(5) 0.52077(6) 0.5795(12) 0.52084(6) 0.52073(9) 0.0220(4
29 0.52198(24) 603(12) 0.52191(24) 0.5796(23) 0.52198(24) 0.52190(13) 0.023(5)

∞ 0.55119(11) 0.0327(6)L3 0.55146(7) 0.5444(14) 0.55119(12) 0.55152(12) 0.0281(7
Q 0.53 0.53 0.56 0.59 0.52 0.53 0.99
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Fig. 5. Best fits to the inverse pseudo-transition temperatures obtained for the gonihedric Ising model using fixed bound-
ary conditions. The inset shows the energy probability density p(e) over e = E/L3 at βeqh for lattices with a number of 
L ∈ {11, 12, . . . , 29} free spins in each dimension.

Table 7
Values for comparison with Ref. [9], with the hat denoting the observables as calculated by Baig et al. Linear lattice 
lengths are L̂ = L + 1, with L being the number of free spins in each direction. The specific heat Ĉmax

V
= L3/(L +

1)3Cmax
V

, Binder’s parameter B̂min = 1.0 −〈Ê4〉/3〈Ê2〉2 with Ê = E −1.5L̂2. The inverse temperatures β are the same 
for their data and ours. Magnetic susceptibilities χ̂max = L3/(L + 1)3χmax are listed as well.

L L̂ β
Ĉmax

V Ĉmax
V

βB̂min
B̂min βχ̂max

χ̂max

9 10 0.45794(13) 5.56(6) 0.45527(14) 0.63964(29) 0.45690(14) 6.86(9)
11 12 0.47465(14) 12.18(11) 0.47338(14) 0.63555(30) 0.47438(14) 16.37(15)
13 14 0.48629(9) 25.27(24) 0.48559(9) 0.6282(5) 0.48621(9) 36.5(4)
14 15 0.49086(8) 35.5(4) 0.49032(9) 0.6234(6) 0.49083(9) 52.9(7)
17 18 0.50126(7) 78.0(6) 0.50096(7) 0.6133(6) 0.50125(7) 126.2(1.2)
19 20 0.50648(8) 121.7(1.0) 0.50626(8) 0.6062(7) 0.50648(8) 206.9(1.9)

Binder’s energy parameter has no explicit volume-dependence by design, but it is sensitive 
to offsets in the energy, which cancel in the specific heat. Our values of the Binder parameter 
minima differ significantly from [9]. However, if we shift our measured energies E to get Ê =
E − 1.5L̂2 = E − 1.5(L + 1)2 and calculate Binder’s parameter (6) with Ê instead of E, our 
measurements reproduce those of [9] very well. The energy E of the system can be written in 
terms of the number of plaquettes with an even or odd number of parallel aligned spins, n+ or n−,

E(β) = −1

2

(
n+(β) − n−(β)

)
. (42)

Since we measure the same cumulant values for shifted energies Ê, in Ref. [9] an additional 
number of n̂+ = n+ + 3L̂2 plaquettes contribute to the system’s energy because energetic con-
tributions from the fixed planes, where all spins are aligned, were included.

For direct comparison, the resulting quantities are listed in Table 7 after applying all correc-
tions, showing that our data is then in very good agreement with Ref. [9]. For completeness we 
include here also our data for the magnetic susceptibility χ̂ . The deviation from the fitting results 
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Table 8
Overview of resulting quantities of the infinite systems.

Model bc β∞ êo êd �ê σ̂

Original (2) periodic 0.551332(8) −1.468364(4) −0.617396(11) 0.850968(18) 0.12037(18)
Dual (3) periodic 0.55143(7) −1.37644(21) −0.88227(19) 0.49402(26) 0.1214(13)

[β∞
dual = 1.31328(12)]

Original (2) fixed 0.55138(5) −1.4782(27) −0.790(4) 0.694(4) 0.0281(7)

in Ref. [9] simply stems from the fact that our simulations are performed with the multicanonical 
method that allows a finite-size scaling analysis with more and significantly larger lattice sizes.

The interface tension (33) as a function of the linear lattice size was also extracted and its 
infinite-volume limit yields a value of σ = 0.0281(7) where we allowed corrections of order 
O(L−2) in the fits. Note that this value is about four times smaller than that for the same model 
with periodic boundary conditions, which may point to unexpectedly large finite-size effects for 
this quantity.

4. Summary

We simulated the plaquette gonihedric Ising model and its dual to shed some light on discrep-
ancies in the recent literature on the reported value(s) of the first-order phase transition temper-
ature. High-precision results from multicanonical simulations forced us to review the traditional 
scaling ansatz for first-order finite-size corrections by taking the exponential low-temperature 
phase degeneracy of the model into account. The leading correction in such circumstances is 
then no longer proportional to the inverse volume of the system, O(L−3), but is rather O(L−2). 
With this finite-size scaling ansatz, our simulations with periodic boundary conditions produced 
consistent results for both the original formulation of the model as well as its dual representa-
tion. Since our results also differed from earlier simulations using fixed boundary conditions, 
where the leading corrections are now O(L−1), we carried out multicanonical simulations of 
the gonihedric Ising model with these boundary conditions too. The resulting inverse transition 
temperature was fully consistent with the value found using periodic boundary conditions when 
larger lattices were included, and hopefully settle once and for all enduring inconsistencies.

The main resulting physical quantities that characterize the first-order phase transition are 
summarized in Table 8 for the different models and boundary conditions in our simulations. We 
find an overall consistent value for the inverse transition temperature of

β∞ = 0.551334(8) (43)

and we measure the interface tension of the original model and its dual for the first time. We 
find values of σ = 0.12037(18) and σ = 0.1214(13) for the original and dual model with pe-
riodic boundary conditions, respectively. The interface tension of the original model with fixed 
boundary conditions is found to be much smaller, σ = 0.0281(7). Interestingly, we also esti-
mate different values for the latent heat with different boundary conditions, �ê = 0.694(4) in 
the case of fixed boundary conditions compared to �ê = 0.850968(18) for periodic boundaries. 
That the latent heat may apparently depend on the boundary conditions has been observed earlier 
in simulations of the q-state Potts model [19]. We suspect, however, that the estimates for fixed 
boundary conditions are flawed by extreme finite-size effects which are difficult to quantify.

Any model with an exponentially degenerate low-temperature phase will display the modified 
scaling at a first-order phase transition we have delineated for the three-dimensional gonihedric 
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model and its dual here. Apart from higher-dimensional variants of the gonihedric model or its 
dual, there are numerous other models in which the scenario could be realized. Examples range 
from ANNNI models [29] to topological “orbital” models in the context of quantum computing 
[30] which all share an extensive ground-state degeneracy. Among the orbital models for tran-
sition metal compounds, a particularly promising candidate is the three-dimensional classical 
compass or t2g orbital model where a highly degenerate ground state is well known and the sig-
nature of a first-order transition into the disordered phase has recently been found numerically 
[31].

Other systems, such as the three-dimensional Ising antiferromagnet on an FCC lattice, have 
an exponentially degenerate number of ground states but a small number (6 in the case of the 
FCC Ising antiferromagnet) of true low-temperature phases. Nonetheless, they do possess an 
exponentially degenerate number of low-energy excitations so, depending on the nature of the 
growth of energy barriers with system size, an effective modified scaling could still be seen at 
a first-order transition for the lattice sizes accessible in typical simulations. The crossover to 
the true asymptotic (standard) scaling would then only appear for very large lattices. Indeed, 
previous simulations appear to have found nonstandard scaling for the first-order transition in 
the three-dimensional Ising antiferromagnet on an FCC lattice [32].
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