345,157 research outputs found
Acceptance Criteria for Critical Software Based on Testability Estimates and Test Results
Testability is defined as the probability that a program will fail a test, conditional on the program containing some fault. In this paper, we show that statements about the testability of a program can be more simply described in terms of assumptions on the probability distribution of the failure intensity of the program. We can thus state general acceptance conditions in clear mathematical terms using Bayesian inference. We develop two scenarios, one for software for which the reliability requirements are that the software must be completely fault-free, and another for requirements stated as an upper bound on the acceptable failure probability
Understanding the Project Planning Process: Requirements Capture for the Virtual Construction Site
Collective Uncertainty in Partially-Polarized and Partially-Decohered Spin-1/2 Systems
It has become common practice to model large spin ensembles as an effective
pseudospin with total angular momentum J = N x j, where j is the spin per
particle. Such approaches (at least implicitly) restrict the quantum state of
the ensemble to the so-called symmetric Hilbert space. Here, we argue that
symmetric states are not generally well-preserved under the type of decoherence
typical of experiments involving large clouds of atoms or ions. In particular,
symmetric states are rapidly degraded under models of decoherence that act
identically but locally on the different members of the ensemble. Using an
approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric
Hilbert space, we explore potential pitfalls in the design and interpretation
of experiments on spin-squeezing and collective atomic phenomena when the
properties of the symmetric states are extended to systems where they do not
apply.Comment: 13 pages, 7 figure
Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms.
The changes in the evolution of the spatial and temporal distribution of the wall shear stresses (WSS) and gradients of wall shear stresses (GWSS) at different stages of the enlargement of an abdominal aortic aneurysm (AAA) are important in understanding the aetiology and progression of this vascular disease since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. Particle image velocimetry (PIV) measurements were performed in in vitro aneurysm models, while changing their geometric parameters systematically. It has been shown that, even at the very early stages of the disease, i.e. increase in the diameter ≤ 50%, the flow separates from the wall and a large vortex ring, usually followed by internal shear layers, is created. These lead to the generation of WSS that drastically differ in mean and fluctuating components from the healthy vessel. Inside the AAA, the mean WSS becomes negative along most of the aneurysmal wall and the magnitude of the WSS can be as low as 26% of the value in a healthy abdominal aorta. Two regions with distinct patterns of WSS were identified inside the AAA: the proximal region of flow detachment, characterized by oscillatory WSS of very low mean, and the region of flow reattachment, located distally, where large, negative WSS and sustained GWSS are produced as a result of the impact of the vortex ring on the wall. Comparison of the measured values of WSS and GWSS to an analytical solution, calculated for slowly expanding aneurysms shows a very good agreement, thus providing a validation of the PIV measurements
Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes
We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills
theory in six dimensions, when stripped of their overall momentum and
supermomentum delta functions, are covariant with respect to the
six-dimensional dual conformal group. Using the generalized unitarity method,
we demonstrate that this property is also present for loop amplitudes. Since
the six-dimensional amplitudes can be interpreted as massive four-dimensional
ones, this implies that the six-dimensional symmetry is also present in the
massively regulated four-dimensional maximal super-Yang-Mills amplitudes.Comment: 20 pages, 3 figures, minor clarification, references update
Recommended from our members
Suppression of steady-state, but not stimulus-induced NF-kappaB activity inhibits alphavirus-induced apoptosis.
Recent studies have established cell type- specific, proapoptotic, or antiapoptotic functions for the transcription factor NF-kappaB. In each of these studies, inhibitors of NF-kappaB activity have been present before the apoptotic stimulus, and so the role of stimulus- induced NF-kappaB activation in enhancing or inhibiting survival could not be directly assessed. Sindbis virus, an alphavirus, induces NF-kappaB activation and apoptosis in cultured cell lines. To address whether Sindbis virus- induced NF-kappaB activation is required for apoptosis, we used a chimeric Sindbis virus that expresses a superrepressor of NF-kappaB activity. Complete suppression of virus-induced NF-kappaB activity neither prevents nor potentiates Sindbis virus-induced apoptosis. In contrast, inhibition of NF-kappaB activity before infection inhibits Sindbis virus-induced apoptosis. Our results demonstrate that suppression of steady-state, but not stimulus-induced NF-kappaB activity, regulates expression of gene products required for Sindbis virus-induced death. Furthermore, we show that in the same cell line, NF-kappaB can be proapoptotic or antiapoptotic depending on the death stimulus. We propose that the role of NF-kappaB in regulating apoptosis is determined by the death stimulus and by the timing of modulating NF-kappaB activity relative to the death stimulus
An investigation of the beneficial effects of adding carbon nanotubes to standard injection grout
Mortar grouting is often used in masonry constructions to mitigate structural decay and repair damage by filling cracks and voids, resulting in an improvement in mechanical properties. This paper presents an original experimental investigation on grout with added carbon nanotubes (CNTs). The samples were prepared with different percentages of CNTs, up to 1.2 wt% with respect to the binder, and underwent three‐point bending tests in crack mouth opening displacement mode and compressive tests. The results showed that very small additions (up to 0.12 wt% of CNTs) increased not only flexural and compressive strengths (+73% and 35%, respectively, in comparison with plain mortar) but also fracture energy (+80%). These results can be explained on the basis of a reduction in porosity, as evidenced by mercury intrusion porosimetry, as well as by a crack bridging mechanism and by the probable formation of nucleation sites for hydration products, as observed through scanning electron microscopy
Estimating development effort in free/open source software projects by mining software repositories: A case study of OpenStack
Because of the distributed and collaborative nature of free/open source software (FOSS) projects, the development effort invested in a project is usually unknown, even after the software has been released. However, this information is becoming of major interest, especially-but not only-because of the growth in the number of companies for which FOSS has become relevant for their business strategy. In this paper we present a novel approach to estimate effort by considering data from source code management repositories. We apply our model to the OpenStack project, a FOSS project with more than 1,000 authors, in which several tens of companies cooperate. Based on data from its repositories and together with the input from a survey answered by more than 100 developers, we show that the model offers a simple, but sound way of obtaining software development estimations with bounded margins of error.Gregorio Robles, Carlos Cervig on and Jes us M. Gonz alez-Barahona, project SobreSale (TIN2011-28110). and The work of Daniel Izquierdo has been funded in part by the Torres Quevedo program (PTQ-12-05577
The Yangian origin of the Grassmannian integral
In this paper we analyse formulas which reproduce different contributions to
scattering amplitudes in N=4 super Yang-Mills theory through a Grassmannian
integral. Recently their Yangian invariance has been proved directly by using
the explicit expression of the Yangian level-one generators. The specific
cyclic structure of the form integrated over the Grassmannian enters in a
crucial way in demonstrating the symmetry. Here we show that the Yangian
symmetry fixes this structure uniquely.Comment: 26 pages. v2: typos corrected, published versio
- …
