21 research outputs found

    Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    Get PDF
    Background : Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells

    Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation

    Get PDF
    Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation

    Maternal Programming of Sexual Behavior and Hypothalamic-Pituitary-Gonadal Function in the Female Rat

    Get PDF
    Variations in parental care predict the age of puberty, sexual activity in adolescence and the age at first pregnancy in humans. These findings parallel descriptions of maternal effects on phenotypic variation in reproductive function in other species. Despite the prevalence of such reports, little is known about potential biological mechanisms and this especially true for effects on female reproductive development. We examined the hypothesis that parental care might alter hypothalamic-pituitary-ovarian function and thus reproductive function in the female offspring of rat mothers that vary pup licking/grooming (LG) over the first week postpartum. As adults, the female offspring of Low LG mothers showed 1) increased sexual receptivity; 2) increased plasma levels of luteinizing hormone (LH) and progesterone at proestrus; 3) an increased positive-feedback effect of estradiol on both plasma LH levels and gonadotropin releasing-hormone (GnRH) expression in the medial preoptic region; and 4) increased estrogen receptor α (ERα) expression in the anterioventral paraventricular nucleus, a system that regulates GnRH. The results of a cross-fostering study provide evidence for a direct effect of postnatal maternal care as well as a possible prenatal influence. Indeed, we found evidence for increased fetal testosterone levels at embryonic day 20 in the female fetuses of High compared to Low LG mothers. Finally, the female offspring of Low LG mothers showed accelerated puberty compared to those of High LG mothers. These data suggest maternal effects in the rat on the development of neuroendocrine systems that regulate female sexual behaviour. Together with studies revealing a maternal effect on the maternal behavior of the female offspring, these findings suggest that maternal care can program alternative reproductive phenotypes in the rat through regionally-specific effects on ERα expression

    Mammary gland serotonin is induced by prolactin and inhibits lactation in the mouse

    No full text
    Many mammals have more than one mammary gland. Milk production is decreased in the gland with low milk consumption, while other glands continue milk synthesis. This study was undertaken to clarify the intragland feedback mechanism of milk production. First, tryptophan hydroxylase (TPH) and its downstream product serotonin (5-HT) were induced in the mammary epithelium of pituitary-grafted prolactin-deficient mice. Second, in the primary mammary epithelial cell culture, inhibitors of 5-HT signaling evoked morphological and molecular signs of activated lactation. Third, TPH mRNA was increased and milk protein mRNAs were decreased in unsuckled glands of lactating dams. Fourth, injection of a peripherally-acting inhibitor of 5-HT synthesis to the dam increased the milk intake of pups. These results support the idea that filling of the gland raised by lactogens increases the level of local TPH/5-HT, which in turn suppresses milk production.Gordon Research Conferences Mammary Gland Biolog

    Serotonin Regulates Mammary Gland Development via an Autocrine-Paracrine Loop

    No full text
    Mammary gland development is controlled by a dynamic interplay between endocrine hormones and locally produced factors. Biogenic monoamines (serotonin, dopamine, norepinephrine, and others) are an important class of bioregulatory molecules that have not been shown to participate in mammary development. Here we show that mammary glands stimulated by prolactin (PRL) express genes essential for serotonin biosynthesis (tryptophan hydroxylase [TPH] and aromatic amine decarboxylase). TPH mRNA was elevated during pregnancy and lactation, and serotonin was detected in the mammary epithelium and in milk. TPH was induced by PRL in mammosphere cultures and by milk stasis in nursing dams, suggesting that the gene is controlled by milk filling in the alveoli. Serotonin suppressed beta-casein gene expression and caused shrinkage of mammary alveoli. Conversely, TPH1 gene disruption or antiserotonergic drugs resulted in enhanced secretory features and alveolar dilation. Thus, autocrine-paracrine serotonin signaling is an important regulator of mammary homeostasis and early involution

    Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions

    No full text
    Homeostatic control of volume within the alveolar spaces of the mammary gland has been proposed to involve a feedback system mediated by serotonin signaling. In this article, we describe some of the mechanisms underlying this feedback based on studies of a human normal mammary epithelial cell line (MCF10A) and mouse mammary epithelium. Mammary serotonin was elevated during lactation and after injection of 5-hydroxytryptophan (5-HTP). The genes encoding the serotonin reuptake transporter (SERT) and the type 7 serotonin receptor (5-HT7) were expressed in human and mouse mammary epithelial cells, and serotonin caused a concentration-dependent increase of cAMP in MCF10A cells. Mouse and human mammary epithelial cells formed polarized membranes, in which tight junction activity was monitored. Treatment of mammary epithelial membranes with serotonin receptor antagonists increased their transepithelial electrical resistance (TEER). Antagonist and agonist effects on TEER were mediated by receptors on the basolateral face of the membranes. Our results suggest a process in which serotonin accumulates in the interstitial fluid surrounding the mammary secretory epithelium and is detected by 5-HT7 receptors, whereupon milk secretion is inhibited. One mechanism responsible for this process is serotonin-mediated opening of tight junctions, which dissipates the transepithelial gradients necessary for milk secretion
    corecore