14,647 research outputs found

    Two-Loop Crossover Scaling Functions of the O(N) Model

    Get PDF
    Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the O(N)O(N) model in the whole critical region. The solution of the beta-function equation, for the running coupling to order two loops, exhibits crossover between the strong coupling fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point. The Wilson functions γλ\gamma_\lambda, ÎłÏ•\gamma_\phi and ÎłÏ•2\gamma_{\phi^2}, and thus the effective critical exponents associated with renormalization of the transverse vertex functions, also exhibit non-trivial crossover between these fixed points.Comment: 21 pages, 4 figures, version to appears in IJMPL

    Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health

    Get PDF
    Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a "dim light" scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.Fil: Plano, Santiago Andrés. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Moro, Paula. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andrés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chiesa, Juan José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Extraction of nuclear matter properties from nuclear masses by a model of equation of state

    Get PDF
    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei. It is shown that the volume energy a1a_1 and the nuclear incompressibility K0K_0 depend essentially on ÎŒnN+ΌˉpZ−2EN\mu_n N+\bar{\mu}_p Z-2E_N, whereas the symmetry energy JJ and the density symmetry coefficient LL as well as symmetry incompressibility KsK_s depend essentially on ÎŒn−Όˉp\mu_n-\bar{\mu}_p, where Όˉp=ÎŒp−∂EC/∂Z\bar{\mu}_p=\mu_p-\partial E_C/\partial Z, ÎŒn\mu_n and ÎŒp\mu_p are the neutron and proton chemical potentials respectively, ENE_N the nuclear energy, and ECE_C the Coulomb energy. The obtained symmetry energy is J=28.5MeVJ=28.5MeV, while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.Comment: 12 pages and 7 figure

    Effective nucleon-nucleon interactions and nuclear matter equation of state

    Get PDF
    Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and Tondeur interactions are written as polynomials of the cubic root of density, with coefficients that are functions of the relative neutron excess ÎŽ\delta. In the extrapolation toward states far away from the standard one, it is shown that the asymmetry dependence of the critical point (ρc,ÎŽc\rho_c, \delta_c) depends on the model used. However, when the equations of state are fitted to the same standard state, the value of ÎŽc\delta_c is almost the same in Skyrme and in Myers-Swiatecki interactions, while is much lower in Tondeur interaction. Furthermore, ÎŽc\delta_c does not depend sensitively on the choice of the parameter Îł\gamma in Skyrme interaction.Comment: 15 pages, 9 figure
    • 

    corecore