13 research outputs found

    Operation and Utilisation of the High Flux Reactor - Annual Report 2009

    Get PDF
    The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy (IE) of the EC - DG JRC and operated by NRG who are also licence holder and responsible for commercial activities. The HFR operates at 45 MW and is of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing reactors in the world and one of the world leaders in target irradiation for the production of medical radioisotopes.JRC.F-Institute for Energy and Transport (Petten

    Verifying elementary ITER maintenance actions with the MS2 benchmark product

    No full text
    A new facility has been taken in operation to investigate the influence of visual and haptic feedback on the performance of remotely executed ITER RH maintenance tasks. A reference set of representative ITER remote handling maintenance tasks was included the master slave manipulator system (MS2) benchmark product. The benchmark product was used in task performance tests in a representative two-handed dexterous manipulation test bed at NRG. In the setup, the quality of visual feedback was varied by exchanging direct view with indirect view setups in which visual feedback is provided via video cameras. Interaction forces were measured via an integrated force sensor. The impact of feedback quality on the performance of maintenance tasks at the level of handling individual parts was measured and analysed. Remote execution of the maintenance actions took roughly 3-5 times more time than hands-on. Visual feedback was identified as the dominant factor, including aspects like (lack of) operator control over camera placement, pan, tilt and zoom, lack of 3D perception, image quality, and latency. Haptic feedback was found to be important, but only in specific contact transition and constrained motion tasks. (C) 2011 Elsevier B.V. All rights reserved

    Introducing artificial depth cues to improve task performance in ITER maintenance actions

    No full text
    Maintenance operations on ITER tokamak components will be largely performed by remote handling. In previous work it was shown that representative maintenance tasks could be performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance. This paper discusses various techniques to improve depth perception in teleoperation, including stereo vision, head tracking, virtual camera views and depth gauges. The most promising techniques were tested. Performance metrics included time-to-complete, path analysis and operator work-load. In a first experiment, artificial depth gauges views were tested in a 1:1 scale hardware testbed with mechanical master-slave manipulators handled by experienced operators. Robust real-time image processing was achieved with marker-based objects. The simple depth gauge and graphical overlay did not significantly improve task performance. Operators commented on their view of the task being “obstructed” by the graphical overlay, and the depth gauge was judged not very informative. In a second experiment, real time tracking was combined with VR display including stereo and head tracking. While stereo was found to improve the task performance significantly over the 1 camera (mono) condition, head tracking unexpectedly did not

    Applying HAZOP analysis in assessing remote handling compatibility of ITER port plugs

    No full text
    This paper describes the application of a Hazard and Operability Analysis (HAZOP) methodology in assessing the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. As part of the ECHUL consortium, the remote handling team at the DIFFER Institute is developing maintenance tools and procedures for critical components of the ECH Upper launcher (UL). Based on NRG\u27s experience with nuclear risk analysis and Hot Cell procedures, early versions of these tool concepts and maintenance procedures were subjected to a HAZOP analysis. The analysis identified several weak points in the general upper port plug maintenance concept and led to clear recommendations on redesigns in port plug design, the operational sequence and ITER Hot Cell equipment. The paper describes the HAZOP methodology and illustrates its application with specific procedures: the Steering Mirror Assembly (SMA) replacement and the exchange of the Mid Shield Optics (MSO) in the ECH UPL. A selection of recommended changes to the launcher design associated with the accessibility, maintainability and manageability of replaceable components are presented

    Progress on Performance Assessment of ITER Enhanced Heat Flux First Wall Technology after Neutron Irradiation

    No full text
    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6–0.8 dpa at 200 °C–250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m−2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes

    Identification of intragenic exon deletions and duplication of TCF12 by whole genome or targeted sequencing as a cause of TCF12-related craniosynostosis

    No full text
    TCF12-related craniosynostosis can be caused by small heterozygous loss-of-function mutations in TCF12. Large intragenic rearrangements, however, have not been described yet. Here, we present the identification of four large rearrangements in TCF12 causing TCF12-related craniosynostosis. Whole genome sequencing was applied on the DNA of eighteen index-cases with coronal synostosis and their family members (forty-three samples in total). The data were analyzed using an autosomal dominant disease model. Structural variant analysis reported intragenic exon deletions (of sizes 84.9 kb, 8.6 kb and 5.4 kb) in TCF12 in three different families. The results were confirmed by deletion-specific PCR and dideoxy-sequence analysis. Separately, targeted sequencing of the TCF12 genomic region in a patient with coronal synostosis identified a tandem duplication of 11.3 kb. The pathogenic effect of this duplication was confirmed by cDNA analysis. These findings indicate the importance of screening for larger rearrangements in patients suspected to have TCF12-related craniosynostosis. This article is protected by copyright. All rights reserved

    Status of ceramic breeder pebble bed thermo-mechanics R&D and impact on breeder material mechanical strength

    No full text
    Among the international fusion solid breeder blanket community, there exists steady progress on the experimental, phenomenological, and numerical characterizations of the pebble bed effective thermo physical and mechanical properties, and of thermomechanic state of the bed under prototypical operating conditions. This paper summarizes recent achievements in pebble bed thermomechanics that were carried out by members of the IEA Fusion Nuclear Technology Subtask I Solid Breeding Blanket. A major goal is on developing predictive capability while identifying a pre-conditioned equilibrium stress state that would warrant pebble bed integrity during operations. The paper reviews and synthesizes existing computational modeling approaches for pebble bed thermomechanics prediction, and differentiating points of convergence/divergence among existing approaches. The progress toward modeling benchmark is also discussed. These advancements have led to a framework to help navigate future research

    Molecular genetics of conjunctival melanoma and prognostic value of tert promoter mutation analysis

    Get PDF
    The aim of this study was exploration of the genetic background of conjunctival melanoma (CM) and correlation with recurrent and metastatic disease. Twenty-eight CM from the Rotterdam Ocular Melanoma Study group were collected and DNA was isolated from the formalin-fixed paraffin embedded tissue. Targeted next-generation sequencing was performed using a panel covering GNAQ, GNA11, EIF1AX, BAP1, BRAF, NRAS, c-KIT, PTEN, SF3B1, and TERT genes. Recurrences and metastasis were present in eight (29%) and nine (32%) CM cases, respectively. TERT promoter mutations were most common (54%), but BRAF (46%), NRAS (21%), BAP1 (18%), PTEN (14%), c-KIT (7%), and SF3B1 (4%) mutations were also observed. No mutations in GNAQ, GNA11, and EIF1AX were found. None of the mutations was significantly associated with recurrent disease. Presence of a TERT promoter mutation was associated with metastatic disease (p-value = 0.008). Based on our molecular findings, CM comprises a separate entity within melanoma, although there are overlapping molecular features with uveal melanoma, such as the presence of BAP1 and SF3B1 mutations. This warrants careful interpretation of molecular data, in the light of clinical findings. About three quarter of CM contain drug-targetable mutations, and TERT promoter mutations are correlated to metastatic disease in CM
    corecore