2,920 research outputs found

    Notes on quantum computing and related topics

    Get PDF

    Identifying and accounting for the Coriolis Effect in satellite NO2 observations and emission estimates

    Get PDF
    Recent developments in atmospheric remote sensing from satellites have made it possible to resolve daily emission plumes from industrial point sources, around the globe. Wind rotation aggregation coupled with statistical fitting is commonly used to extract emission estimates from these observations. These methods are used here to investigate how the Coriolis Effect influences the trajectory of observed emission plumes, and to assess the impact of this influence on satellite derived emission estimates. Of the 17 industrial sites investigated, nine showed the expected curvature for the hemisphere they reside in. Five showed no or negligible curvature, and two showed opposing or unusual curvature. The sites which showed conflicting curvature all reside in topographically diverse regions, where strong meso-gamma scale (2&ndash;20 km) turbulence dominates over larger synoptic circulation patterns. For high curvature cases the assumption that the wind-rotated plume aggregate is symmetrically distributed across the downwind axis breaks down, which impairs the quality of statistical fitting procedures. Using NOx emissions from Matimba power station as a test case, not compensating for Coriolis curvature resulted in an10 underestimation of &sim; 9 % on average for years 2018 to 2021. This study is the first formal observation of the Coriolis Effect and its influence on satellite observed emission plumes, and highlight both the variability of emission calculation methods and the need for a standardised scheme for this data to act as evidence for regulators.</p

    Double-layer shocks in a magnetized quantum plasma

    Full text link
    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter HH associated with the Bohm potential and the positron to electron density ratio ÎŽ\delta. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E

    Evidence for magnetoplasmon character of the cyclotron resonance response of a two-dimensional electron gas

    Full text link
    Experimental results on the absolute magneto-transmission of a series of high density, high mobility GaAs quantum wells are compared with the predictions of a recent magnetoplasmon theory for values of the filling factor above 2. We show that the magnetoplasmon picture can explain the non-linear features observed in the magnetic field evolution of the cyclotron resonance energies and of the absorption oscillator strength. This provides experimental evidence that inter Landau level excitations probed by infrared spectroscopy need to be considered as many body excitations in terms of magnetoplasmons: this is especially true when interpreting the oscillator strengths of the cyclotron transitions

    Improving statistical skills through students’ participation in the development of resources

    Get PDF
    This paper summarizes the evaluation of a project that involved undergraduate mathematics students in the development of teaching and learning resources for statistics modules taught in various departments of a university. This evaluation regards students’ participation in the project and its impact on their learning of statistics, as characterized in terms of statistical reasoning, statistical thinking, and skills for statistical consultancy. The participation of students is evaluated from the viewpoint of communities of practice. The evaluation resulted in a characterization of the benefits of such a project and suggestions for implementations of future projects, and in addition brought to light new theoretical elements both as regards the learning of statistics and as regards communities of practice. In particular, the analysis highlighted contributions of the students involved to resource development practice in the community of university statistics teachers, as well as contributions to students’ learning as a result of participation in this community

    Frohlich mass in GaAs-based structures

    Full text link
    The Frohlich interaction is one of the main electron-phonon intrinsic interactions in polar materials originating from the coupling of one itinerant electron with the macroscopic electric field generated by any longitudinal optical (LO) phonon. Infra-red magneto-absorption measurements of doped GaAs quantum wells structures have been carried out in order to test the concept of Frohlich interaction and polaron mass in such systems. These new experimental results lead to question the validity of this concept in a real system.Comment: 4 pages, 3 figure

    Comparing Behavioural Models Using Data from Experimental Centipede Games

    Get PDF
    The centipede game posits one of the most well-known paradoxes of backward induction in the literature of experimental game theory. Given that deviations from the unique subgame perfect Nash equilibrium generates a Pareto improvement, several theoretical models have been employed in order to rationalize this kind of behavior in this social dilemma. The available explanations range from social preferences including fairness, altruism or cooperation motives, errors in playing, inability to perform backward induction or different depths of reasoning. In the present study, we use the Blavatskyy's theoretical contribution, and relax the assumptions of Expected Utility maximization and risk-neutral attitudes, to test an alternative explanation. We compare various probabilistic decision theory models in terms of their descriptive (in-sample) and predictive (out-of-sample fit) performance, using data from experimental centipede games. We find that introducing non-Expected Utility preferences to the Quantal Response Equilibrium model, along with a nonlinear utility function, provides a better explanation compared to alternative specifications such as the Level-k or the Quantal Response Equilibrium model with altruistic motives. (JEL C72, C92, D81, D82)
    • 

    corecore