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Abstract
These notes are intended as a simple introduction to the new field of quantum
computing, quantum information theory and quantum cryptography. Under-
graduate level quantum mechanics and mathematics is required for an under-
standing of these lectures. After an introduction to qubits and quantum regis-
ters, we introduce the key topics of entangled states and quantum logic gates.
For two qubit states, we introduce the four Bell states as a change of basis.
The essentials of quantum cryptography are then described, although this is
just a straightforward application of quantum mechanics. The characters of
Alice, Bob and Eve are first introduced here. Two qubit Bell states are used
to demonstrate a novel ’dense coding’ technique. Finally, in these communi-
cation applications, quantum teleportation is explained in detail, again making
use of entangled Bell states. The technique of magnetic spin resonance is used
as a familiar example to illustrate how qubit operations could in principle be
realised. This leads on to the specification of quantum devices that can en-
code functions. All this is preparatory to a detailed discussion of two of the
most significant quantum algorithms discovered to date, namely, Peter Shor’s
factorization algorithm and Lov Grover’s quantum database search algorithm.

1. INTRODUCTION

The basic unit of a classical computer is a bit. This is a device that can be in one of two states. Usually
this is a wire which is in the state|1 > if the wire carries a voltage and|0 > if it does not (more precisely
the two states are distinguished by the electrode having a high or low voltage respectively). Thus such
a bit can carry one binary digit, the two states representing the numbers 0 and 1. By assemblingL such
bits one can store numbers from 0 to2L − 1. The memory of a modern computer contains of the order
of 109 bits and the disk storage contains of the order of1011 bits.

In early computers a memory device to store a bit consisted of a small toroid of ferromagnetic
material with an electric coil wrapped around it. If the bit was “set” (i.e. in the state representing the
number 1) then a current passed through the coil and the toroid produced a magnetic field. For the state
representing 0 there was no current and consequently no magnetic field. Clearly the total number of such
bits was limited by constraints of both size and cost and computer with more than106 bits were rare.

Since then we have seen the revolution in semiconductor technology and a great deal of effort
has been put into reducing the size and costs of these binary bits. Nowadays a flat microchip with a
surface area of order 1cm2 can hold of the order of108 bits. The small size of these memory chips has
also had the effect of speeding up the rate at which computers can run; essentially this is because the
electromagnetic signal has less distance to travel between components.

The original motivation for imagining a “quantum computer” was based on pushing these im-
provements in technology to their physical limit. The smallest device one can imagine, that can exist
in two states, is a single electron which has the property of spin whose component in a given direction
(usually taken to be thez−direction) can take one of two values,±1

2 h̄. We could take these two states
to represent the two states of a binary bit. The spin of an electron can be flipped by the application of
an oscillating magnetic field with the correct (resonant) frequency, and can in principle be measured by



applying a constant magnetic field in thez direction and observing the energy change. If this were a
single outer electron of a molecule that represented one lattice point on the surface of a crystal, a surface
area of order 1cm2 could hold of order1016 such bits. The difficulty, of course, is that to store and
read different numbers we would need to be able to apply or measure magnetic fields that differentiated
between two neighbouring spins which were only10−8 cm apart.

There is, however, an important qualitative difference between a classical bit, which is an elec-
tronic component, and a quantum bit, such as the spin of an electron. Whereas a classical bit can only
be in one of two possible states (high or low voltage) and must be in one of these two states, a quantum
bit need not be in one or other of the two allowed states but can in general be in any linear superposition
of these states. The electron does not have to be in an eigenstate of thez component of spin, for which
the value is definitely either+1

2 h̄ or−1
2 h̄, but in a linear superposition of these. For a register ofL such

quantum bits this gives us the opportunity of storing all possible numbers between0 and2L − 1, simul-
taneouslyand performing operations on these numbers and storing the result of applying such operations
on all arguments simultaneously. The difficulty now arises of how to project from this linear superposi-
tion the particular value that we are interested in. This is where algorithms for quantum computing are
used and there are cases in which these algorithms can significantly enhance the rate at which a compu-
tation can be performed. One particular example of this is a database search for which the time taken to
carry out the search grows linearly with the size of the database if classical computational algorithms are
used, but only as the square root of the size of the database if a quantum algorithm is used on an initial
quantum state, which consists of a superposition of the entire database. The database in question must
be a quantum version of the classical database.

The practical difficulties in constructing such quantum computers are enormous. So far the various
algorithms have only been carried out on samples of at most two or three quantum bits. Nevertheless
a theoretical study of the potential power of a quantum computers is a worthwhile enterprise, albeit in
anticipation of significant improvement in the required engineering techniques.

2. DEFINITIONS ETC.
a. qubit:

A qubit is a quantum system which can be in one of two states. We shall think of these as spin-1
2

particles, the two states being two eigenstates ofSz, although it is likely that in practice a photon
will be used, the two states being the state of polarization (horizontal or vertical) with respect
to some chosen axis. The qubit can take 2-values - 0 or 1, which are associated with the two
eigenstates as follows:

|1 > ≡ | ↑>
|0 > ≡ | ↓>

In general a qubit can be in a superposition of these two states with complex coefficientsα andβ,

α|0 > +β|1 >, (|α|2 + |β|2 = 1)

and it is this property that distinguishes them from classical bits used in conventional computers.
In mathematical terms, we say that since the general state of a qubit can be a superposition of the
two pure states, with arbitrary complex coefficients, then the state a described as a vector in the
two dimensional complex spaceC2.

b. L-bit register: A register is a set of L qubits. Such a register can be used to store an integer
number,J , between0 and2L − 1. The state of the register is denoted by this number, e.g.

|J > ≡ | ↑↑↓↑↓ · · · ↓↓> .



For example in the case of a 2-bit register

|0 >≡ | ↓↓>
|1 >≡ | ↓↑>
|2 >≡ | ↑↓>
|3 >≡ | ↑↑>

Once again, a register can be in a superposition of states

|ψ > ≡
2L−1∑
J=0

aJ |J > .

The interpretation of the (complex) coefficientsaJ is that|aJ |2 is the probability that a measure-
ment of the state of the system will yield the valueJ . Clearly by conservation of probability we
have

2L−1∑
J=0

|aJ |2 = 1.

Such states are also known as “coherent” states.
In mathematical terms, the state of anL qubit register is a vector in a space which is the outer
productC2 ⊗ C2 · · · ⊗ C2, one for each of theL qubits.

c. Entangled pair:
This is a pair of qubits which is in a superposition of eigenstates ofSz i.e. some superposition of
the states|0 >, |1 >, |2 >, |3 > defined above, in such a way that the statecannotbe written as
the product of states for each qubit.
Thus, for example the state

1
2

(|0 > +|1 > +|2 > +|3 >)

is not an entangled pair, since it can be written as

1
2

(| ↓> +| ↑>)⊗ (| ↓> +| ↑>) ,

whereas the state
1√
2

(|0 > +|3 >) =
1√
2

(| ↓↓> +| ↑↑>)

is an example of an entangled pair. In general a superposition (with coefficientsai, i = 0 · · · 3)

a0|0 > +a1|1 > +a2|2 > +a3|3 >
is an entangled stateunless

det

∣∣∣∣∣ a0 a1

a2 a3

∣∣∣∣∣ = 0.

A specific example of entangled pairs occurs in the total spin of multi-electron atoms. In the case
of He, for example, the two electrons can be in a total spin stateS = 1 with three allowed values
for the z−component of spin,Sz = −1, 0, 1, or in a total spin stateS = 0. In terms of the
individual spins of the two electrons these are given by

| ↓↓>, S = 1, Sz = −1
| ↑↑>, S = 1, Sz = 1

1√
2

(| ↓↑> +| ↑↓>) , S = 1, Sz = 0

1√
2

(| ↓↑> −| ↑↓>) , S = 0, Sz = 0.



The two statesS = 1, Sz = 0 andS = 0, Sz = 0 are examples of entangled states.
The concept of entangling can easily be extended toL qubits. The state is entangledunlessit
can be written as a product of states for each of theL qubits. Regarding the state as a vector in
the spaceC2 ⊗ C2 · · · ⊗ C2, a state is said to be entangled if itcannotbe expressed as a single
outer product of vectors in eachC2 space, but only as a linear superposition of such outer products
(known as a “tensor product”).

d. Unitary transformations:
A Unitary transformation is a transformation which takes the superposition (coherent) state ofL
qubits

2L−1∑
J=0

aJ |J >

to
2L−1∑
J=0

a′J |J >,

where

a′J =
2L−1∑
K=0

UK
J aK ,

the matrixU being unitary
U†U = I.

From this unitarity property one can show that the new coefficientsa′J also obey the conservation
of probability relation

2L−1∑
J=0

|a′J |2 = 1

and so the new state is also a superposition in which the probability of a measurement yielding the
valueJ is |a′J |2. This is also a coherent state so the unitarity operator preserves the coherence.
A unitary transformation might only act on one qubit, leaving the other qubits in the register alone
or alternatively it might act on two or more qubits simultaneously.

Examples ofU:

The unitary transformations on a single qubit can be written in terms of four matrices, each de-
pending on a single parameter,θ.
•

ux(θ) =

(
cos(θ

2 ) i sin(θ
2 )

i sin(θ
2 ) cos(θ

2 )

)
.

For a spin-12 particle, this corresponds to a rotation through angleθ about thex− axis.

•
uy(θ) =

(
cos(θ

2 ) sin(θ
2)

− sin(θ
2 ) cos(θ

2)

)
.

For a spin-12 particle, this corresponds to a rotation through angleθ about they− axis.

•
uz(θ) =

(
eiθ/2 0

0 e−iθ/2

)
.



For a spin-12 particle, this corresponds to a rotation through angleθ about thez− axis.

u0(θ) =

(
eiθ/2 0

0 eiθ/2

)
.

This corresponds to multiplication by an overall phase factor. The identity matrix,I , is
u0(4π). Spin representations of the rotation group are double-valued: a rotation by2π gen-
erates an overall minus sign and4π is required for the identity operation.

A general unitary2× 2 matrix can always be obtained from a product of these transformations.

Now consider 2 qubit states. The unitary matricesU are4× 4 matrices. For example•

U1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

This flips both qubits. It is a “NOT” gate, denoted byUNOT , i.e.

UNOT | ↑↑>= U1|3 >= |0 >= | ↓↓> .

•

U2 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

This flips qubit 2 only, e.g.

U2| ↑↑>= U2|3 >= |2 >= | ↑↓> .

•

U3 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 .

This flips qubit 2 if and only if qubit 1 is in the state|1 >. This is a “controlled NOT gate”,
and is usually denoted asCNOT , e.g.

CNOT | ↑↑>= CNOT |3 >= |2 >= | ↑↓>,
but

CNOT | ↓↑>= CNOT |1 >= |1 >= | ↓↑>,
•

U4 =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 .

This flips qubit 1 if and only if qubit 2 is in the state|1 >. It is also a controlled NOT gate
and we denote it byC′

NOT . Thus

C′
NOT | ↑↑>= CNOT |3 >= |1 >= | ↓↑>,

but
C′

NOT | ↑↓>= CNOT |2 >= |2 >= | ↑↓>,



•

U5 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

This interchanges the two qubits and is denoted byUswitch. This can be obtained from a
combination (product) ofC′

NOT andC′
NOT , i.e.

Uswitch = CNOT C
′
NOT CNOT

Any L qubit unitary matrix can be constructed out of outer products of these single qubit unitary
matrices (or their matrix products). However they will not in general be a single outer product of
these2 × 2 unitary matrices, but may be a sum of such outer products (this is known as a “tensor
product”).
In the above examples of 2 qubit unitary operators we have

U1 = ux(π)⊗ ux(−π)

U2 = I⊗ (u0(π)ux(−π))

CNOT =
1
2

(I⊗ I− (u0(π)uz(−π))⊗ I + u0(π)⊗ ux(−π) + (uz(π))⊗ ux(−π)) .

The last is an example of such a tensor product.
A unitary matrix representing the transformation of anl qubit system is a matrix in the outer
product spaceC2⊗C2 · · · ⊗ C2. If the transformation acts on each qubit separately then the matrix
can be written as an outer product of a (2 × 2) matrix on eachC2 space for each qubit. If, on
the other hand, the transformation involves the interaction between qubits, as is the case for the
controlled NOT gate, then the unitary matrix is not a single outer product of matrixes acting on
each qubit, but a linear superposition of such outer products.
In general, a physical device can in principle be constructed that performs any of these unitary
transformations. In the case of spin-1

2 particles we use the techniques of NMR (Nuclear Magnetic
Resonance) to illustrate the construction of ’gedanken’ devices, as is described later.

e. Hadamard transformation:
This is a unitary transformation which acts on each qubit with the matrix

uH =
1√
2

(
−1 1
1 1

)

In terms of the fundamental single qubit transformations described above we have

uH = u0(π)uz(π)uy(−π/2).
TheL qubit Hadamard transformation is represented by the outer product

UH = uH ⊗ uH ⊗ uH · · ·
It is often more convenient to use the pseudo-Hadamard transformation represented by the matrix

upH = uy(−π/2) =
1√
2

(
1 −1
1 1

)
.

Either of these transformations has the effect that it transforms the lowest state|0 > into the sum
of all states with equal coefficients,

UH |0 >=
2L−1∑
J=0

|J >
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Fig. 1: Stern-Gerlach apparatus. A particle of spin-1
2

is passed between the poles of a magnet, which produces a non-uniform

magnetic field in thez−direction. The particle is displaced upwards or downwards according to thez−compoent of its spin

being+ 1
2

or− 1
2

respectively. If the particle is initially in a superposition of these states then this apparatus forces it into one

or other of the allowed states.

or

UpH |0 >=
2L−1∑
J=0

|J > .

The Hadamard gate is idempotent, i.e. it is equal to its own inverse, whereas this is not the case
for the pseudo-Hadamard transformation. On the other hand a pseudo-Hadamard transformation
can be achieved by a single rotation about they−axis.

f. Measurement:
A measurement of a coherent state is an operation which “collapses” the state into a pure state.
For a superposition (coherent state) we have for each value ofK (0 to2L − 1)

2L−1∑
J=0

aJ |J >→ |K >,

with probability |aK |2. This operation destroys the coherence of the state by collapsing it into one
of the allowed pure states. The operation cannot be described by a simple matrix multiplication.
In the case of spin-12 particles such a collapse is effected by the simultaneous measurement of the
z−component of spin of each of the particles. Thez−component of spin of a single electron,
Sz, may be measured using a “Stern-Gerlach” apparatus. The electron is passed through a region
of non-uniform magnetic field in thez−direction. This causes a displacement of the path of
the electron in one of two directions depending on thez−component of the spin of the electron
(which is proportional to thez−component of the magnetic moment of the electron). From this
displacement, thez−component of the spin can be deduced. If the electron wasnot in a pure
eigenstate ofSz but a superposition of such eigenstates, then the operation of passing it through a
Stern-Gerlach apparatus forces the electron into one of the two eigenstates ofSz.

g. Bell states:
These are four states for a 2 qubit system, which are specific examples of entangled pairs. They
are labelledB0, B1, B2, B3 and may be defined as

|B0 > ≡ 1√
2

(| ↑↑> +i| ↓↓>) =
1√
2

(|3 > +i|0 >)

|B1 > ≡ 1√
2

(| ↓↓> +i| ↑↑>) =
1√
2

(|0 > +i|3 >)

|B2 > ≡ 1√
2

(| ↓↑> −i| ↑↓>) =
1√
2

(|1 > −i|2 >)

|B3 > ≡ 1√
2

(| ↑↓> −i| ↓↑>) =
1√
2

(|2 > −i|1 >)



These Bell states form an orthonormal set

< BI |BJ >= δIJ , I, J = 0 · · · 3

so that any two qubit state can be expanded as a linear sum of Bell states.
They can be obtained by acting respectively on the pure state|0 >, |1 >, |2 >, or |3 > with the
unitary transformation

UBell =
1√
2




0 0 i 1
1 −i 0 0
−i 1 0 0
0 0 1 i




e.g.
|BJ > = UBell|J >, J = 0, · · · 3

It is useful to invert these Bell states, i.e to write the pure states as superpositions of Bell states.
This gives

|0 >= | ↓↓>=
1√
2

(|B1 > −i|B0 >)

|1 >= | ↓↑>=
1√
2

(|B2 > +i|B3 >)

|2 >= | ↑↓>=
1√
2

(|B3 > +i|B2 >)

|3 >= | ↑↑>=
1√
2

(|B0 > −i|B1 >)

These may be written

|J > =
3∑

K=0

(
U−1

Bell

)K

J
|BK >

Thus a Bell state may be measured by passing it through a device which performs the inverse
transformation ofUBell and then measuring thez−components of spin of the two spin-1

2 particles.
These Bell states have the remarkable property that they can be transformed into each other by
transformingonly oneof the two qubits, i.e. the4 × 4 transformation matrix which transforms
|BI > into |BJ > is of the form

I⊗ vIJ .

for example
v30 = uy(−π)

v20 = ux(−π)

v10 = uz(π)

v00 = I

This property of the Bell states is the crucial property on which applications such as quantum teleporta-
tion depend. Entanglement, as expressed in these Bell states, is the essence of the mystery of quantum
mechanics. These states embody the non-local, ’faster-than-light’ property of quantum mechanics, that
Einstein so detested and which the EPR paradox was intended to highlight. Quantum algorithms make
essential use of this non-local property to deliver their spectacular improvements over classical algo-
rithms.



3. QUANTUM CRYPTOGRAPHY

This is not really quantum computing but rather the use of quantum mechanics to transmit a key which
is only known to the encoder (Alice) and the decoder (Bob). A better name than quantum cryptography
would be quantum key distribution since quantum mechanics is used to create a method of cryptographic
key distribution which can detect the presence of an eavesdropper (Eve) listening in.

A messageN , which can be stored in an L-bit register is encoded with the use of a keyK which
is also a number between0 and2L − 1. The encoded messageM is simply

M = N ⊕K

(⊕ means exclusive or - XOR).

The decoding is effected by again performing the XOR operation with K

M ⊕K = N ⊕K ⊕K = N ⊕ 0 = N

The key is transmitted from encoder to decoder (or vice versa) by transmitting a large number of
qubits (usually one will need at least 2L of these). The qubits are either in one of the two eigenstates of
Sz or in one of the two eigenstates ofSx. These are chosen at random, but with equal probability by the
encoder. For each qubit the encoder, Alice, records the eigenvalue of the qubit as well as the direction of
spin (z or x) in which the qubit was an eigenstate. The decoder, Bob, measures either thez-component
or thex-component of the spin of each qubit (at random, but with equal probability) and records the
result as well as which direction of spin was measured.

In about half the cases Bob will have measured the spin in the same direction as Alice prepared it
( “good” qubits). For such qubits Bob will obtain a result for the eigenvalue which is always equal to the
eigenvalue corresponding to the eigenstate in which it was transmitted. In the remaining half, in which
Bob measured the spin in a different direction from the direction in which they were prepared (“bad”
qubits) the result will have equal probability of being equal or opposite to the eigenvalue of the prepared
state. These “bad” bits must be discarded, but it is safe to build a key,K, from the remaining “good”
qubits.

It is therefore sufficient for Bob to tell Alice (on an open line if necessary) in which direction the
spin of each qubit was measured it but not the result. Alice can then tell Bob (again on an open line)
which are the “good” qubits and which are the “bad” ones. Although this is public information, no third
party can reconstruct the key, since the third party still does not know the eigenvalues of the “good”
qubits.

One important feature of this technique is that the presence of an eavesdropper, Eve, can be de-
tected. If Eve intercepts the signal from Alice, she does not know which setting, z or x, that Alice used.
She must therefore choose a setting at random and then retransmit this result, using her setting, to Bob.
Since Eve will not guess correctly every time, when Alice and Bob first make contact over the phone,
they compare not only the settings but the results. If there is an eavesdropper then Alice and Bob will find
that there are some “good qubits” on which they disagree. They then know that the security of the quan-
tum channel is compromised. If they find perfect agreement, and can conclude there is no eavesdropper,
they can then go ahead and exchange only setting information as described above.

Quantum key distribution, both over optical fibres and in free space, has been successfully demon-
strated by a number of different groups.

4. DENSE CODING

This is a technique which can be used to send a message consisting of an integer between0 and22L − 1,
by transmittingL qubits only.
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Fig. 2: Alice sends the numberK (K = 0 · · · 3) to Bob. Alice takes one particle from an entangled pair in Bell state|B0 >,

performs the transformationvK0 on it, and sends it to Bob, who then measures the Bell state of the transformed entangled pair.

We consider just one qubit and use it to transfer a number,K, between0 and3.

The technique uses the fact that a transformation between Bell states can be effected by acting on
one qubit only. Thus the sender, Alice, and receiver, Bob, each take one qubit from a state which is in a
well defined Bell state,|BJ >. Alice then performs a transformationvJK on her qubit and transmits it
to Bob. Bob then measures the Bell state of the pair of qubits (the qubit that was sent plus the qubit from
the original entangled pair) and deduces the value ofK between 0 and 3.

As an example we assume that the sender and receiver both receive a qubit from an entangled pair
which is in the state|B0 >.

The entangled pair starts in the state

|B0 > ≡ 1√
2

(| ↑ ↑> +i| ↓ ↓>)

Now Alice performs one of the following unitary transformations on her qubit

v00 =

(
1 0
0 1

)

(no operation)

v10 =

(
i 0
0 −i

)

(rotation byπ about thez-axis)

v20 =

(
0 −i
−i 0

)

(rotation by−π about thex-axis)

v30 =

(
0 −1
1 0

)

(rotation by -π about they-axis).

The entangled pair is now in the state

|ψK >=
1√
2

(| ↑ (vK0 ↑) > +i| ↓ (vK0 ↓) >)

for some value ofK between 0 and 3.



Now use

v00| ↑>= | ↑>
v00| ↓>= | ↓>
v10| ↑>= i| ↑>

v10| ↓>= −i| ↓>
v20| ↑>= −i| ↓>
v20| ↓>= −i| ↑>
v30| ↑>= | ↓>

v30| ↓>= −| ↑>
to see that|ψK > are once again Bell states, i.e.

|ψ0 >=
1√
2

(| ↑ ↑> +i| ↓ ↓>) = |B0 >

|ψ1 >=
1√
2

(i| ↑ ↑> +i(−i)| ↓ ↓>) = |B1 >

|ψ2 >=
1√
2

(−i| ↑ ↓> +i(−i)| ↓ ↑>) = |B2 >

|ψ3 >=
1√
2

(| ↑ ↓> −i| ↓ ↑>) = |B3 > .

After performing one of these unitary operations on her electron, Alice sends the transformed
electron to Bob. Bob now measures the new Bell state of the entangled pair and deduces the value ofK
from the result of that measurement.

5. QUANTUM TELEPORTATION

If a qubit is in a pure eigenstate then one can measure thez-component of spin and communicate the
result of the measurement to a recipient. However, if the qubit is in some superposition

|ψ > = α| ↑> +β| ↓>,

then any measurement ofSz will collapse the state into one of the two pure eigenstates. Thus a superpo-
sition state cannot be measured without destroying information about the original state. This result goes
by the name of the ’Quantum No Cloning Theorem’.

The theorem is proved as follows:

Suppose thatUc is a unitary cloning operator, such that for any arbitrary quantum state|α >,

Uc |α > |0 > = |α > |α > .

Likewise for a different quantum state|β > we would have

Uc |β > |0 > = |β > |β > .

Now let |ψ > be another quantum state which is a linear superposition of|α > and|β >,

|ψ > = a |α > + b |β > .
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Fig. 3: Alice and Bob each take one qubit from an entangled pair in Bell state|B0 >. Alice then measures the Bell state

of the entangled pair consisting of the qubit taken from the original Bell state pair and the unmeasured qubit she wishes to

teleport to Bob, which is in the state|ψ >. She communicates the result of this measurement,K to Bob, who then performs

the transformationvK0 on his qubit, thereby tranforming it into the state|ψ >
.

Operating on|ψ > |0 > with the cloning operator leads to

Uc |ψ > |0 > = a |α > |α > + b |β > |β > .

This isnot the state|ψ > |ψ >, which contradicts the postulate that the operatorUc clonesanyarbitrary
quantum state.

Now, although, as we have seen, a quantum state (qubit) cannot be copied, we will now show that
it can be transported from Alice to Bob, but only at the expense of destroying the original state. The
method relies on the same properties of Bell states as the algorithm for dense coding. In the case of
dense coding, Alice first performs a transformation on a single qubit of a two qubit Bell state, then sends
the transformed qubit to Bob who finally measures the final Bell state of the resulting pair. For quantum
teleportation, Alice and Bob again start with one qubit of an entangled Bell state pair. Alice measures the
Bell state formed by her qubit and the unknown qubit and then tells Bob which transformation to make
on his qubit to regenerate the original unmeasured qubit state.

It is necessary for both Alice and Bob each to take one of two qubits which have been prepared
in some Bell state. Again we shall consider the state|B0 > for convenience, although this can easily be
generalized. Alice now has two qubits - the qubit in the state|ψ > that she wishes to transport and the
qubit obtained from the device that produced the entangled pair in Bell state|B0 >.

The three qubit state can therefore be written

|φ > = |ψ > ⊗|B0 > =
1√
2

(α| ↑↑↑> +iα| ↑↓↓> +β| ↓↑↑> +iβ| ↓↓↓>)

For convenience we shall write this as

|φ > =
1√
2

(α| ↑↑> ⊗| ↑> +iα| ↑↓> ⊗| ↓> +β| ↓↑> ⊗| ↑> +iβ| ↓↓> ⊗| ↓>)

where we have separated out the third qubit, which is the one taken from the Bell state|B0 > by
Bob. After Alice has measured the Bell state of her two qubits, Bob’s qubit can be transformed into
a ’copy’ of the original qubit in the state|ψ > by performing one of the four unitary transformations
vK0, K = 0 · · · 3 used in the section above on dense coding. Which of the four unitary transformations
needs to be used depends on the result of the Bell state measurement.

To see this, we expand the above expression for|φ > into a sum of Bell states for the first two
qubits, using the expressions for the inversions of the Bell states given below the definition of the Bell
states. After collecting terms this gives



|φ > =
1
2

(|B0 > ⊗ (α| ↑> +β| ↓>) + |B1 > ⊗ (−iα| ↑> +iβ| ↓>)

+|B2 > ⊗ (−α| ↓> +β| ↑>) + |B3 > ⊗ (iα| ↓> +iβ| ↑>))

Applying the inverses of the operatorsvK0, K = 0 · · · 3 to the state|ψ >, which we wish to
teleport, we can see that this may be written

|φ > =
1
2

(
|B0 > ⊗ (v00)−1 |ψ > +|B1 > ⊗ (v10)−1 |ψ >

+|B2 > ⊗ (v30)−1 |ψ > +|B3 > ⊗ (v20)−1 |ψ >
)

A measurement of the Bell state by Alice collapses the wavefunction into one of these components.
In particular, it forces the qubit taken by Bob into the statev−1

K0|α > 1. The result of the measurement tells
Alice into which component the wavefunction has collapsed. She then communicates this information
to Bob who performs the relevant unitary transformation on his qubit which is then transformed into the
required state|ψ >.

Note that although the wavefunction collapses immediately upon the measurement of the Bell state
by Alice - so that the Bob’s qubit is also instantaneously collapsed, the information required to reproduce
the initial state|ψ > has to be communicated from the sender to the recipient at a velocity less than or
equal to the velocity of light.

6. A ‘GEDANKEN REALISATION: MAGNETIC RESONANCE

We start by showing how magnetic resonance can be used to effect the transformationsux, uy, uz on a
single qubit, which is taken to be the spin part of the wavefunction of a spin-1

2 particle.

We take the example ofuy and work (for convenience) in a system of units whereh̄ = 1.

First we imagine the spin-1
2 placed in a uniform magnetic field of magnitudeB0 in thez− direc-

tion.

The part of the Hamiltonian that depends on the spin is then given by

H = µB0Sz,

where for a particle of chargee and massm, and gyromagnetic ratiog (=2 for an electron), the magnetic
moment (vector) is given by

µ = g
e

2m
S,

the operators for the components ofS being represented by the2× 2 matrices

Sx =
1
2

(
0 1
1 0

)
, Sy =

1
2

(
0 −i
i 0

)
, Sz =

1
2

(
1 0
0 −1

)

This leads to a (“Zeeman”) energy splitting between the two pure states (Sz = ±1
2 ) with energy

differenceω0 = µB0.

Now we apply an oscillating magnetic field with angular frequencyω0 and amplitudeB′, ( B′ �
B) in thenegativey-direction, so that the (spin dependent part of the ) Hamiltonian becomes

H = µBSz − µB′ cos(ω0t)Sy.

1This collapse of the state of Bob’s qubit due to a measurement performed by Alice is an example of the Einstein-Podolsky-
Rosen (EPR) paradox.



We write the time dependent spin-part of the wavefunction as(
a(t)e−iω0t/2

b(t)eiω0t/2

)
,

where we have displayed explicitly the time dependence of the two states in the absence of the applied
oscillating magnetic field. Definingω′ = 1

2µB
′ the Schroedinger equation is

i
∂

∂t

(
a(t)e−iω0t/2

b(t)eiω0t/2

)
= ω0Sz

(
a(t)e−iω0t/2

b(t)eiω0t/2

)
− 2ω′ cos(ω0t)Sy

(
a(t)e−iω0t/2

b(t)eiω0t/2

)
,

which upon writingcos(ω0t) = 1
2

(
eiω0t + e−iω0t

)
and a little algebra simplifies to

i
∂

∂t

(
a(t)
b(t)

)
= −ω′Sy

(
a(t)
b(t)

)
− ω′Sy

(
a(t)e−2iω0t

b(t)e2iω0t

)
.

Now we make the approximation that since we shall apply the oscillating field for a time which is
large compared with1/ω0, the last term in the above equation oscillates very rapidly and averages out to
a very small quantity over this time interval and may therefore be neglected. We thus end up with

i
∂

∂t

(
a(t)
b(t)

)
= −ω′Sy

(
a(t)
b(t)

)
.

This is a pair of first order differential equations whose solution is

(
a(t)
b(t)

)
=


 cos

(
1
2ω

′t
)

sin
(

1
2ω

′t
)

− sin
(

1
2ω

′t
)

cos
(

1
2ω

′t
)


(
a0

b0

)
,

wherea0, b0 are the initial values ofa(t) andb(t). Thus we see that if we setθ = ω′t (= 1
2µB

′t) then this
pulse of oscillating magnetic field in the (negative)y− direction effects the transformation represented by
the matrixuy(θ). The transformationsux(θ) anduz(θ) are similarly effected by applying the oscillating
magnetic fields in the negativex− andz− directions respectively.

In most cases the spin-1
2 particle is a nucleus and this method is known as “Nuclear Magnetic

Resonance” (NMR).

When there is more than one spin-1
2 particle present, they will interact with each other through

the magnetic moments associated with their spins. Now, in addition to the energy shifts produced by the
applied uniform magnetic field in thez−direction, there is a shift which depends in general on the mutual
orientation of the various spins in the system, e.g for a two qubit system there will be a contribution to
the energy whose sign depends on whether the spins are of the same sign or of opposite sign. It is this
contribution to the energy which is used to construct devices which effect transformations on system
consisting of more than one qubit and which are not single outer products of transformations on each bit
(such as a controlled NOT gate).

Now consider NMR devices which operate on a two qubit system.

Notation:

φ
(l)
w means a pulse which rotates the spin state of qubitl through an angleφ about thew-axis. The

inverse of this operation is writtenφ(l)
−w. Thusφ(l)

w is a pulse which performs the transformationuw(φ)
on qubitl. Note that in usual NMR notation the angleφ is usually quoted indegrees.

If w = z then these operators effect a phase change through angleφ/2 with sign depending on the
spin of the qubit.



A further operator which effects a phase change is writtenφ(12). This is just a time delay in
which the state of the two qubits evolves under the influence of the coupling of the mutual spins, which
may be writtenλS(1)

z S
(2)
z . The time delay occurs for a period2φ/λ such that the phase change of the

state is+φ/2 if both the spins have the samez-component and−φ/2 if the two spins have opposite
z-component.

In terms of4 × 4 matrices for a 2 qubit (bit 1 is the most significant bit and bit 2 is the least
significant bit) system these pulses may be represented as

φ(2)
y =




cos
(

φ
2

)
sin
(

φ
2

)
0 0

− sin
(

φ
2

)
cos

(
φ
2

)
0 0

0 0 cos
(

φ
2

)
sin
(

φ
2

)
0 0 − sin

(
φ
2

)
cos

(
φ
2

)




φ(1)
y =




cos
(

φ
2

)
0 sin

(
φ
2

)
0

0 cos
(

φ
2

)
0 sin

(
φ
2

)
− sin

(
φ
2

)
0 cos

(
φ
2

)
0

0 − sin
(

φ
2

)
0 cos

(
φ
2

)




φ(2)
x =




cos
(

φ
2

)
i sin

(
φ
2

)
0 0

i sin
(

φ
2

)
cos

(
φ
2

)
0 0

0 0 cos
(

φ
2

)
i sin

(
φ
2

)
0 0 i sin

(
φ
2

)
cos

(
φ
2

)




φ(1)
x =




cos
(

φ
2

)
0 i sin

(
φ
2

)
0

0 cos
(

φ
2

)
0 i sin

(
φ
2

)
i sin

(
φ
2

)
0 cos

(
φ
2

)
0

0 i sin
(

φ
2

)
0 cos

(
φ
2

)




φ(2)
z =



eiφ/2

e−iφ/2

eiφ/2

e−iφ/2




φ(1)
z =



eiφ/2

eiφ/2

e−iφ/2

e−iφ/2




and

φ(12) =



eiφ/2

e−iφ/2

e−iφ/2

eiφ/2






Thus for example a series of pulses which flips the sign of the state|3 > but leaves the others
unchanged is given (up to an irrelevant overall phase) by

90(2)
z 90(1)

z 90(12) = e−iπ/4



eiπ

1
1

1




A controlled NOT gate, which flips the spin of the least significant qubit if and only if the most
significant qubit is set

|j > ⊗|k >→ |j > ⊗|j ⊕ k >

|0 >→ |0 >, |1 >→ |1 >, |2 >→ |3 >, |3 >→ |2 >
This has a4× 4 matrix representation 


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




Up to an overall phase, this may be reproduced by the series of pulses (sequence obtained by
reading from right to left)

CNOT = 90(2)
−y 90(2)

z 90(1)
−z 90(12) 90(2)

y

To see this we first consider the three middle terms

90(2)
z 90(1)

−z 90(12) =



ei(−

π
4
+ π

4
+ π

4 )

ei(−
π
4
−π

4
−π

4 )

ei(+
π
4
+ π

4
−π

4 )

ei(+
π
4
−π

4
+ π

4 )




= ei(
π
4 )




1
−1

1
1




and

90(2)
−y




1
−1

1
1


 90(2)

y =
1
2




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1






1
−1

1
1






1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1




=
1
2




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1






1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1




=




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1






Thus we see thatCNOT = 90(2)
−y 90(2)

z 90(1)
−z 90(12) 90(2)

y reproduces the required controlled NOT
gate up to an overall phase.

LikewiseC ′
NOT = 90(1)

−y 90(2)
−z 90(1)

z 90(12) 90(1)
y reproduces the other type of controlled NOT in

which the most significant bit is flipped if and only if the least significant bit is “set”.

Therefore the following combination of pulses will interchange the two qubits

Uswitch = 90(2)
−y 90(2)

z 90(1)
−z 90(12) 90(2)

y 90(1)
−y 90(2)

−z 90(1)
z 90(12) 90(1)

y 90(2)
−y 90(2)

z 90(1)
−z 90(12) 90(2)

y

Consider the following combination of pulses

UBell ≡ C ′
NOT 90(1)

z 90(2)
z 90(12)90(2)

−x90(2)
z 90(1)

−z90
(12)

This has a matrix representation

UBell =
1√
2




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1





−1

1
1

1






1 −i 0 0
−i 1 0 0
0 0 1 −i
0 0 −i 1






1
−1

1
1


 ,

=
−i√

2




0 0 i 1
1 −i 0 0
−i 1 0 0
0 0 1 i




which is the matrix (up to an overall phase) that converts pure states into Bell entangled states.

A two qubit Hadamard gate (a device that performs a two qubit Hadamard transformation) can be
constructed (up to an overall phase) as

H = 90(1)
y 90(2)

y 180(12).

In terms of the matrix representation

H =
1
2




1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1





i
−i

−i
i


 =

i

2




1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1




7. QUANTUM LOGIC GATES USING MAGNETIC RESONANCE

We consider a two qubit system. A Controlled NOT gate (exclusive or - XOR) is a device into which one
sends a pair of qubits in the state

|j > ⊗|k >, (j, k = 0, 1)

and the output state is
|j > ⊗|k ⊕ j >

In general the input states could be superpositions

|ψ >=
1∑

j=0

aj |j >



|φ >=
1∑

k=0

bk|k >

In this case the device performs the operation

|ψ > ⊗|φ >→
1∑

j,k=0

ajbk|j > ⊗|j ⊕ k >

Such a device could consist of a proton (or other nucleus) trapped at some site in a semiconductor
(a “quantum dot”) in spin statej with magnetic momentgIµN , and an electron in spin statek trapped
at some other site in the semiconductor (or a nucleus with a very much larger magnetic moment). The
magnetic moment of the electron is2µB , which is much larger than that of the proton by a factor of
the ratio of the proton to electron mass. A constant magnetic fieldB0 is applied in thez-direction. The
proton is the first qubit and the electron is the second qubit There is a mutual interaction between the two
magnetic moments, which depends on the distance between the two qubits and the relative orientation of
their spins.

The Hamiltonian for the system has a part which is proportional to the applied magnetic field,
which we may write as

Hmag = B0

(
gIµN (j − 1/2) + 2µB(k − 1/2) + (−1)(j+k) λ

)
Whereλ encodes the mutual interaction and is multiplied by a sign which is positive if the spins are
aligned and negative otherwise. The energy levels between the two allowed states for the electron differ
by

B0 (2µB + 2λ) ≡ ω0 + ∆ω,

if j = 1, and

B0 (2µB − 2λ)) ≡ ω0 −∆ω,

if j = 0.

By applying an oscillating magnetic field in they−direction with frequencyω0 + ∆ω and ampli-
tudeB′ one can induce oscillations in the spin state of the electronprovided the proton is in the state
j = 1. If the proton isnot in this state then the probability for inducing transitions is negligibly small.
Likewise the probability for inducing transitions in the proton is negligibly small. If this oscillating
magnetic field is applied for a time

t =
π

µBB′ ,

then the electron will (almost) always flip its spin state.

Thus we have constructed a device which performs the following operations

|0 > ⊗|0 >→ |0 > ⊗|0 >
|0 > ⊗|1 >→ |0 > ⊗|1 >
|1 > ⊗|0 >→ |1 > ⊗|1 >
|1 > ⊗|1 >→ |1 > ⊗|0 >

We see that the second output qubit contains the exclusive XOR of the two input qubits. Note that this is
just a Controlled NOT gate, (CNOT ).

Very simply we can construct a NOR gate which performs

|j > ⊗|k >→ |j > ⊗| ∗ j ⊕ k >,

simply by changing the frequency of the oscillating magnetic field toω0 −∆ω



Vf

jK >

jJ >

jK � f(J) >

jJ >

Fig. 4:Vf is a function device which performs the transformation|J > ⊗|K >→ |J > ⊗|K ⊕ f(J) > .

8. FUNCTIONS

The device described above can easily be used to produce quantum states that encode functions. In the
case of a functionf(j) which maps a single qubit onto a single qubit (j = 0, 1, f(j) = 0, 1) then the
applied magnetic field in this device should be set to

B′
1∑

j=0

f(j)eiω(j)tθ(π −B′µBt)

where
ωj = ω0 − (−1)j∆ω.

This then performs the operation

|j > ⊗|k >→ |j > ⊗|k ⊕ f(j) > .

If k is taken to be 0, then the second bit just containsf(j) at output.

This device is easily extended to a function which maps an integer between0 and2L − 1 onto a
single bit. The first qubit is replaced by anL qubit register known as the “control register”. This consists
of L protons trapped at different sites on the semiconductor. Now each proton will have a different
mutual interaction term with the electron because the distance between the magnetic dipoles is different
for each of the protons. The magnetic part of the Hamiltonian now becomes

Hmag = B0

(
L∑

l=1

gIµN (jl − 1/2) + 2µB(k − 1/2) +
L∑

l=1

(−1)(jl+k) λl

)

and the energy difference between the two electron states is

ω(J) = B0

(
2µB −

L∑
l=1

2 (−1)jl λl

)
≡ ω0 +

L∑
l=1

∆ωJ ,

The input register (the protons) is in the state|J > where

J =
L∑

l=1

jj2l−1.

Now by applying an oscillating magnetic field

B′
2L−1∑
J=0

f(J)eiω(J)tθ(π −B′µBt)

the device will perform the transformation

|J > ⊗|k >→ |J > ⊗|k ⊕ f(J) > .



Again if we setk = 0 initially then the device will returnf(J) in the electron qubit (“target qubit”).

Generalizing this to a function which maps an integer between0 and2L − 1 to an integer in the
range0 to 2L′ − 1 presents severe practical difficulties. Now as well asL protons at different sites in the
semiconductor we needL′ electrons at different sites and we need to be able to access each of these with
a different frequency oscillating field.

Writing a functionf(J) as

f(J) ≡
L′∑

l′=1

fl′(J)2l′−1,

the oscillating magnetic field applied to thel′ electron must be

B′
2L−1∑
J=0

fl′(J)eiω(J)tθ(π −B′µBt).

If the “target register” (theL′ electrons) are initially in the stateK then this device performs the
operation

|J > ⊗|K >→ |J > ⊗|K ⊕ f(J) > .

SettingK = 0 thus generatesf(J) in the target register.

Note that this is an example of a “reversible gate”, i.e. if we pass the output through the apparatus
we recover the input.

|J > ⊗|K ⊕ f(J) >→ |J > ⊗|K > .

This quantum device can produce a quantum state which is a superposition of functions of several
inputs. In particular, if we set all theL qubits (protons) of the “control” register to be eigenstates ofSx

with eigenvalue+1
2 , i.e. each in the state

1√
2

(| ↑> +| ↓>) ,

then the register is in the superposition2

1√
2L

(|0 > +|1 > +|2 > + · · ·) =
2L−1∑
J=0

|J > .

If the target (electrons) register was initially in the state0 (i.e. all electrons in the state| ↓>) then upon
exit the target register is would the state

2L−1∑
J=0

|f(J) > .

We thus have a state which contains all of the possible values off(J) simultaneously. However,
once a measurement is made on the spin in thez-direction of spins of all the electrons the state collapses
into one of the allowed values ofJ for the protons and the correspondingf(J) for the electrons. There
is equal probability for obtaining each value of the pair(J, f(J)).

An “oracle” is a device which reverses the sign of a wavefunction of the register is in some par-
ticular (marked) state|J0 >. This can be achieved by constructing a function device in which the target

2This is equivalent to the state obtained by operating on the state|0 > with a Hadamard transformation.



jk >

jJ >

jk � �JJ0 >

jJ >

Fig. 5: The oracle operating on a control register and a single qubit target register performs the transformation|J > ⊗|k >→
|J > ⊗|k ⊕ δJJ0 > .

register is a single qubit (L′ = 1) which is flipped if and only if the control register is in the state|J0 >,
i.e.

|J > ⊗|k >→ |J > ⊗|k ⊕ δJJ0 > .

If |k > is initially in the state

|k >=
1√
2

(|0 > −|1 >) ,

then

|k ⊕ δJJ0 > = (−1)δJJ0
1√
2

(|0 > −|1 >) ,

so that the device flips the sign of the wavefunction (for the entire system) if and only if the control
register is in the state|J0 >.

9. DISCRETE FOURIER TRANSFORMS

We consider the example of taking the Fourier transform of a 2 qubit quantum system, which is in the
state

|ψ >=
3∑

J=0

aJ |J > .

The Fourier transform state is

|φ >=
3∑

K=0

bK |K >,

where

bK =
3∑

J=0

eiπJK/2aJ .

For this we need the following quantum devices which can perform unitary operators.

a. The first is a unary operator which acts on one qubit only

uy

(
π

2

)
=

1√
2

(
1 1
−1 1

)
,

which corresponds to a rotation throughπ/2 about they-axis.

uy

(
π

2

)
| ↑>=

1√
2

(| ↑> −| ↓>)

uy

(
π

2

)
| ↓>=

1√
2

(| ↓> +| ↑>)



This can act oneitherof the two qubits so we will write these asUA
(1) andUA

(2) . Thus acting on
the two qubit system represented by the bases vectors|0 > to |3 >, these operators may be written
as the4× 4 matrices

UA
(1) = uy

(
π

2

)
⊗ I =

1√
2




1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1




UA
(2) = I⊗ uy

(
π

2

)
=

1√
2




1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1




b. A binary operator,UB(φ), which acts on a two qubit system, leaving all states alone except that
the state|1 > ≡ | ↓↑> is multiplied by a phaseeiφ.
In 4× 4 matrix notation, therefore

UB(φ) =




1 0 0 0
0 1 0 0
0 0 eiφ 0
0 0 0 1




c. The binary operator,UNOT which flips both qubits

UNOT =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




d. The binary operator that interchanges the two qubits

Uswitch =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Now the operation of the Fourier transform consists of the sequential application of the following
operations:

a. Applicaton of the operatorUNOT

b. Application of operatoruy(π/2) on qubit(1), (UA
(1))

c. Application ofUB(π/2)
d. Application of operatoruy(π/2) on qubit(2), (UA

(2))

e. Application of the operatorUswitch.
In other words

FT ≡ UswitchUA
(2)U

B(π/2)UA
(1)UNOT

=
1
2




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1






1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 1






1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1






0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




=
1
2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i






Thus we see that

FT |J > =
1
2

3∑
K=0

ei(JKπ/2)|K >,

as required.

This can be generalized to an L-bit system, using appropriate combinations ofUA
(j) andUB

jk(π/2
n), (i, j, k, n =

0 · · · (2L − 1)).

10. FACTORIZATION

Factorization algorithm:
To factorize the numberN , we can use an algorithm known as “Shor’s algorithm”.

Let a be coprime withN ( no common factors).

The function defined by
fa,N (J) ≡ (aJ , MOD N)

has a period,P .

ProvidedP is even and(aP/2, MOD N) 6= N − 1, then the greatest common divisors of the
pairs

(aP/2 + 1, N) and (aP/2 − 1, N)

are factors ofN .

Example:

N = 21, a = 2

(2, MOD 21), (22, MOD 21) (23, MOD 21) (24, MOD 21) (25, MOD 21)

(26, MOD 21) (27, MOD 21) (28, MOD 21) (29, MOD 21) · · ·
= 2, 4, 8, 16, 11, 1, 2, 4, 8, · · ·

The period of the functionP = 6, so that26/2 = 8.

The greatest common divisor of9 and21 is 3.
The greatest common divisor of7 and21 is 7.
Thus the factors of 21 are 7 and 3.

Now finding the greatest common divisor of two numbers can be achieved by a very fast algorithm
(due to Euclid). The difficulty is finding the period,P , of the functionfa,N (J). By classical computers
this is the same level of complexity as any other factorization algorithm.

However by quantum encoding the functionfa,N (J) the period can be found relatively rapidly.

First we construct a device that performs the operation

|J > ⊗|K >→ |J > ⊗|K ⊕ fa,N (J) >,

using the magnetic resonance method described above. Then ( by polarizing the spins of all the
qubits in the control register in thex−direction, with eigenvalue+1

2 ), we consider the input

2L−1∑
J=0

1√
2L
|J > ⊗|0 >



and obtain upon output
2L−1∑
J=0

1√
2L
|J > ⊗|fa,N (J) > .

Next we make a measurement of the spin state (in thez−direction of the target register . This returns
f q

a,N , q = 0, · · · (P − 1), which is one of theP allowed values of the functionfa,N (J).
This immediately collapses the control register into a superposition (unnormalized)∑

r

|rP + q >,

wherer runs from zero to the integer below2L/P . The problem is thatq can take any non-negative
integer value up toP − 1. However if we take the Fourier transform of this state this effect is ‘washed
away’. In more detail the Fourier transform of the above function (again unnormalized) is

2L−1∑
K=0

∑
r

ei(K(rP+q)π/2L)|K > .

If P is an integer divisor of2L then the factor

2L/P∑
r=0

ei(KrPπ/2L)

vanishes unlessK is an integer multiple of2L/P . This means that any subsequent measurement of the
z-component of the spin of the control register will yield a result which is an integer multiple of2L/P .
Thus after a few such measurements the value ofP can be determined with high confidence.

In the more realistic case whereP is notan integer divisor of2L the result of the Fourier transform
is a superposition which is very highly peaked around integer multiples of2L/P . Thus several measure-
ments of the spin state of the Fourier transformed control register have to be taken. However once again
the value ofP can be deduced with a high level of confidence after a number of measurements which is
far fewer than the number of operations required to factorize a number using classical computers.

If P turns out to be one of the forbidden values, the the process must be repeated using a different
value ofa ( a separate function device). However the probability ofP being allowed is greater than 50%.

11. GROVER’S ALGORITHM

The objective is to force a register which is a superposition of all allowed states (with equal coefficient)
into a particular “marked state”. The state is marked by passing the system through an “oracle”, which
reverses the sign of the wavefunction if and only if the register is in the marked state. With a classical
computer one must systematically compare all the states with the marked state, a process which grows as
the maximum allowed marked number (i.e. as2L for anL bit register), whereas using Grover’s algorithm
this process only grows as the square root of the maximum allowed number (i.e. as2L/2 for anL bit
register).

First an example using two qubits:

Initially the qubits are in the state|0 >. We apply a (pseudo-) Hadamard transformation,H, which
performs the operation

|0 >→ H|0 > =
1
2

(|0 > +|1 > +|2 > +|3 >)



UJ is a matrix which flips the sign of the state|J >, but leaves all other states alone, i.e.

UJ |Ψ > = |Ψ > −2 < J |Ψ > |J > .

The device which performs such an operation is the oracle.

Now consider the sequence of operatorsHU0H
−1UJH acting on|0 >

HU0H
−1UJH|0 > =

3∑
K=0

1
2
HU0H

−1UJ |K >

=
3∑

K=0

1
2
HU0H

−1|K > −HU0H
−1|0 >

=
3∑

K=0

1
2
HH−1|K > −

3∑
K=0

< 0|H−1|K > H|0 > −HH−1|J > +2 < 0|H−1|J > H|0 >

Now
3∑

K=0

1
2
HH−1|K > = H|0 >

and

< 0|H−1|K >=
1
2

for all K

This leaves
HU0H

−1UJH|0 >= −|J > .

This device forces the state|0 > into the state|J > (up to a sign) after a single pass.

This has been achieved experimentally by Jones using a solution of the base cytosine inD2O.
This results in a molecule with two unpaired protons forming a two spin system. Selective NMR pulses
can be applied to each proton.

Now considerL bits.
Again a Hadamard transformation is applied to the state|0 >,

H|0 > =
1√
2L

2L−1∑
K=0

|K > .

The oracle flips the sign of the state|J >, but leaves all other states unchanged

UJ |Ψ > = |Ψ > −2 < J |Ψ > |J >

< 0|H−1|K > =
1√
2L
, for all K

Let |Ψ >≡ H|0 >.

Now consider the operatorHU0H
−1UJ acting on the state|Ψ >

HU0H
−1UJ |Ψ > =

2L−1∑
K=0

1√
2L

HU0H
−1|K > − 2√

2L
HU0H

−1|J >

=
2L−1∑
K=0

1√
2L
|K > −2

2L−1∑
K=0

1√
2L

< 0|H−1|K > H|0 > − 2√
2L

HU0H
−1|J > +

4√
2L

< 0|H−1|J > H|0 >

= H|0 > − 2
2L

2LH|0 > +
4
2L

H|0 > − 2√
2L
|J >

= −
(

1− 4
2L

)
|Ψ > − 2√

2L
|J >



Now consider the operatorHU0H
−1UJ acting on the state|J >

HU0H
−1UJ |J > = −HU0H

−1UJ |J >
= −|J > +2 < 0|H−1|J > H|0 >
= −|J > +

2√
2L
|Ψ >

Consider the space of the two (non-orthogonal) states|Ψ > and|J >. In this subspace the operator
HU0H

−1UJ has the matrix representation

−


(
1− 4

2L

)
2√
2L

− 2√
2L

1




For largeL we may approximate this by

−
(

cos(α/2) sin(α/2)
− sin(α/2) cos(α/2)

)

where

α =
4√
2L
.

If we perform this operationN times whereN is the nearest integer to

π

√
2L

4

then we get (approximately) the matrix (
0 1
1 0

)
,

In other words the state is converted from pure|Ψ > which we obtain by passing|0 > through a
Hadamard gate, to the required state|J > in less than

√
2L passes.

(
HU0H

−1UJ

)N
H|0 >≈ |J > .

The error in this approximation is of order1/
√

2L.

It may be more convenient to use orthogonal states. We therefore define the state|Φ > which is
orthogonal to|J > by

|Φ >=

√
2L

2L − 1

(
|Ψ > − 1√

2L
|J >

)
=

1√
2L − 1

∑
K 6=J

|K >

so that

|Ψ > =

√
2L − 1

2L
|Φ > +

1√
2L
|J > = cos β|Φ > + sin β|J >,

wheresin β = 1/
√

2L, i.e.
< 0|H|Φ >= cos β

< 0|H|J >= sinβ



The operatorU0 may be expressed as

U0 = I− 2|0 >< 0|,

whereI is the identity operator, so that

HU0H
−1 = I− 2H|0 >< 0|H−1

Now the operatorO ≡ HU0H
−1UJ acts on the orthogonal|Φ >, |J > subspace as follows.

O|J > = −HU0H
−1|J > = −|J > +2H|0 >< 0|H−1|J >

= −|J > +2 sinβ cos β|Φ > +2 sin2 β|J >
= − (cos(2β)|J > − sin(2β)|Φ >)

O|Φ > = HU0H
−1|Φ > = |Φ > −2H|0 >< 0|H−1|Φ >

= |Φ > −2 cos2 β|Φ > −2 sin β cos β|J >
= − (cos(2β)|Φ > + sin(2β)|J >)

Thus in this subspace the operatorO has the (unitary) representation

O = −
(

cos(2β) sin(2β)
− sin(2β) cos(2β)

)

The precise number of times one need to apply the operatorO in order to obtain a pure state|J >
is given by

(2N + 1)β =
π

2

N =
π

4 sin−1
(

1√
2L

) − 1
2

Note that forL = 2, the exact solution isN = 1.

In the following example we take the case of four qubits, so that the register store a number
between 0 and 15. We assume that the marked state is the number 7. We begin by taking the state
|0 > and performing a Hadamard transformation so that we have a superposition of all states with equal
coefficients. Now we pass the state four times, though the series of transformationsU7, H, U0, and
H. Note that after three iterations the state is almost purely in the state|7 >, as required. In fact the
coefficient of the component|7 > is 0.96 rather than unity and there is still a small component from the
other states. Recalling that the probability to find the system in a given state is the square (modulus)
of the coefficient, we see that there is a 99.8% probability to find the system in the required state after
three iterations. We note also that upon application of a fourth iteration the purity of the state is lost - the
components of the other states has increased considerably.



Iteration 1

U7

H

U0

H



Iteration 2

U7

H

U0

H



Iteration 3

U7

H

U0

H



Iteration 4

U7

H

U0

H



11.1 Using Grover’s Algorithm to Search a Database

Consider a functionf(J) which maps an integerJ to an integerF = f(J). For simplicity assume that
the map is one-to-one. The objective is to force a state into the state|J > ⊗|F >, given knowledge of
F but notJ . Once again we need an oracle which reverses the sign of the wavefunction for a state if the
second (target) register is in the state|F >, but otherwise leaves the state unchanged.

Using a sequence of NMR pulses we can construct a device which performs the operationVf , such
that

|J > ⊗|K >→ Vf |J > ⊗|K > ≡ |J > ⊗|K ⊕ f(J) > .

The first register is the “control” register and the second register is the “target register”. Since we assume
that the map is one-to-one we are assuming that these registers both containL qubits.

Note thatVf is an idempotent operator, i.e. the device is reversible. In particular,

Vf |J > ⊗|0 > = |J > ⊗|f(J) >

Vf |J > ⊗|f(J) > = |J > ⊗|0 >
Now define an deviceW which is a Hadamard gate acting on the control registeronly followed by

the deviceVf , with the matrix representation

W ≡ VfH

W−1 = Vf H
−1

whereH is a Hadamard gate acting on the control register only. Thus

W|0 > ⊗|0 > =
1√
2L

2L−1∑
K=0

Vf |K > ⊗|0 > =
1√
2L

2L−1∑
K=0

|K > ⊗|f(K) >

Since the map is one-to-one we can rewrite this last expression as

1√
2L

2L−1∑
F=0

|f−1(F ) > ⊗|F > .

Now letUF be a device which flips the sign of the quantum state if and only if the target register
is in the state|F >. From the above discussion on Grover’s algorithm forL qubits it follows that

(
WU0W

−1UF

)N
W|0 > ⊗|0 > ≈ |f−1(F ) > ⊗|F >,

whereN is the nearest integer to
√

2Lπ/4.

12. DEUTSCH’S ALGORITHM

Consider a one bit function (“true” or “false”),f(I), whereI is an integer between 0 and2L − 1, but
f(I) can only take the values 0 or 1. Iff(I) = 0 for all values ofI or f(I) = 1 for all values ofI, then
the function is said to be “even”. Iff(I) = 1 for 2L/2 values ofI andf(I) = 0 for the remaining2L/2
values then the function is said to be “balanced”.

For a classical computer, if we want to establish whether a function is even or balanced (or neither)
we would need to sample the function for all values of the argument,I. Using Deutsche’s algorithm we
can construct a state which is a function of a superposition of all possible arguments and with a single



enquiry we can establish either that the function is not balanced or (exclusive) that the function is not
even.

Single qubit:

Let Uf be a quantum logic gate which perform the operation on a single control bit and a single
target bit

|j > ⊗|k >→ Uf |j > ⊗|k > = |j > ⊗|k ⊕ f(j) >,

wheref(j) is a single bit function of the single bitj, e.g.

Uf |j > ⊗|0 > = |j > ⊗|f(j) >

Now let |k > be

|k > =
1√
2

(| ↓> −| ↑>) =
1√
2

(|0 > −|1 >)

such that

Uf |j > ⊗|k > =
1√
2

(|j > ⊗|f(j) > −|j > ⊗|0 >) , if f(j) = 1,

and

Uf |i > ⊗|j > =
1√
2

(|j > ⊗|f(j) > −|j > ⊗|1 >) , if f(j) = 0.

In other words

Uf |j > ⊗|k > =
1√
2
(−1)f(j)|j > ⊗|k >

Now let |j > be

|j > =
1√
2

(| ↑> +| ↓>) =
1√
2

(|1 > +|0 >)

Uf |j > ⊗|k > =
1√
2

(
(−1)f(0)|0 > +(−1)f(1)|1 >

)
⊗ |k >

= (−1)f(0)|
(
|0 > +(−1)(f(1)+f(0)) |1 >

)
⊗ |k > .

Now the control bit is in an eigenstate ofSx with eigenvalue−1
2 if f(0) ⊕ f(1) = 1 (balanced)

and+1
2 if f(0)⊕ f(1) = 0 (constant).

Extension toL bits for the control register:

Uf is a device that performs the operation

|J > ⊗|k >→ Uf |J > ⊗|k > = |J > ⊗|k ⊕ f(J) > .

Heref(J) is a single bit function of the integerJ .

We start with the control register in the state

H|0 >=
1√
2L

2L−1∑
K=0

|K >

and the target bit in the state(|0 > −|1 >)/
√

2, as before.



Upon output from the device the control register is in the state

1√
2L

2L−1∑
K=0

(−1)f(K)|K > .

If f is balanced then this state is orthogonal toH|0 >, i.e the overlap

1√
2L

2L−1∑
K=0

(−1)f(K) < 0|H|K >

is zero. On the other hand if the function is constant then the overlap has modulus unity.

Thus we pass the sample through a Stern-Gerlach apparatus that only allows the particle to pass if
Sx = L/2. From this measurement we can deduce the following with absolute certainty

• If the sample passes through then the function is NOT balanced (the overlap is not zero).

• If the sample does not pass though then the function is NOT constant (the modulus of the overlap
is not unity).
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