1,445 research outputs found

    Bodily attractiveness and egalitarianism are negatively related in males.

    Get PDF
    Ancestrally, relatively attractive individuals and relatively formidable males may have had reduced incentives to be egalitarian (i.e., to act in accordance with norms promoting social equality). If selection calibrated one's egalitarianism to one's attractiveness/formidability, then such people may exhibit reduced egalitarianism ("observed egalitarianism") and be perceived by others as less egalitarian ("perceived egalitarianism") in modern environments. To investigate, we created 3D body models of 125 participants to use both as a source of anthropometric measurements and as stimuli to obtain ratings of bodily attractiveness and perceived egalitarianism. We also measured observed egalitarianism (via an economic "dictator" game) and indices of political egalitarianism (preference for socialism over capitalism) and "equity sensitivity." Results indicated higher egalitarianism levels in women than in men, and moderate-to-strong negative relationships between (a) attractiveness and observed egalitarianism among men, (b) attractiveness and perceived egalitarianism among both sexes, and (c) formidability and perceived egalitarianism among men. We did not find support for two previously-reported findings: that observed egalitarianism and formidability are negatively related in men, and that wealth and formidability interact to explain variance in male egalitarianism. However, this lack of support may have been due to differences in variable measurement between our study and previous studies

    Pairwise balanced designs covered by bounded flats

    Full text link
    We prove that for any KK and dd, there exist, for all sufficiently large admissible vv, a pairwise balanced design PBD(v,K)(v,K) of dimension dd for which all dd-point-generated flats are bounded by a constant independent of vv. We also tighten a prior upper bound for K={3,4,5}K = \{3,4,5\}, in which case there are no divisibility restrictions on the number of points. One consequence of this latter result is the construction of latin squares `covered' by small subsquares

    Extremal Bounds for Three-Neighbour Bootstrap Percolation in Dimensions Two and Three

    Full text link
    For r1r\geq1, the rr-neighbour bootstrap process in a graph GG starts with a set of infected vertices and, in each time step, every vertex with at least rr infected neighbours becomes infected. The initial infection percolates if every vertex of GG is eventually infected. We exactly determine the minimum cardinality of a set that percolates for the 33-neighbour bootstrap process when GG is a 33-dimensional grid with minimum side-length at least 1111. We also characterize the integers aa and bb for which there is a set of cardinality ab+a+b3\frac{ab+a+b}{3} that percolates for the 33-neighbour bootstrap process in the a×ba\times b grid; this solves a problem raised by Benevides, Bermond, Lesfari and Nisse [HAL Research Report 03161419v4, 2021].Comment: 45 page

    Improved model of the triple system V746 Cas that has a bipolar magnetic field associated with the tertiary

    Full text link
    V746 Cas is known to be a triple system composed of a close binary with an alternatively reported period of either 25.4d or 27.8d and a third component in a 62000d orbit. The object was also reported to exhibit multiperiodic light variations with periods from 0.83d to 2.50d, on the basis of which it was classified as a slowly pulsating B star. Interest in further investigation of this system was raised by the detection of a variable magnetic field. Analysing spectra from four instruments, earlier published radial velocities, and several sets of photometric observations, we arrived at the following conclusions: (1) The optical spectrum is dominated by the lines of the B-type primary (Teff1~16500(100) K), contributing 70% of the light in the optical region, and a slightly cooler B tertiary (Teff3~13620(150) K). The lines of the low-mass secondary are below our detection threshold; we estimate that it could be a normal A or F star. (2) We resolved the ambiguity in the value of the inner binary period and arrived at a linear ephemeris of T_super.conj.=HJD 2443838.78(81)+25.41569(42)xE. (3) The intensity of the magnetic field undergoes a~sinusoidal variation in phase with one of the known photometric periods, namely 2.503867(19)d, which we identify with the rotational period of the tertiary. (4) The second photometric 1.0649524(40)d period is identified with the rotational period of the B-type primary, but this interpretation is much less certain and needs further verification. (5) If our interpretation of photometric periods is confirmed, the classification of the object as a slowly pulsating B star should be revised. (6) Applying an N-body model to different types of available observational data, we constrain the orbital inclination of the inner orbit to ~60 deg to 85 deg even in the absence of eclipses, and estimate the probable properties of the triple system and its components.Comment: Accepted for publication in Astronomy and Astrophysic

    Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    Get PDF
    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an olivine grain. The deposit has 3 microstructurally distinct sub-layers composed of silicate glass with varying modal fractions and size distributions of npFe( sup 0) spherules, along with nanocrystalline silicate material. A relatively thin (50-300 nm) topmost surface layer has a high-concentration of npFe0 spherules 5-20 nm in size. Element mapping shows the layer to be enriched in Fe by a factor of 2.5 relative to the olivine substrate, with Mg and Si depleted by 20% and 10% respectively. This is compositionally complementary to the underlying, middle layer of the deposit that is depleted in Fe, enriched in Mg and has a much lower npFe0 concentration. A third layer of nanocrystalline olivine occurs at the substrate interface. Discussion: The FE-STEM results suggest the topmost layer is a vapor deposit, underlain by a thicker microstructurally complex melt-generated layer. The compositional relations suggest the melt layer was partially vaporized, preferentially losing more volatile elements (e.g., Fe). The vaporized material re-condensed to form the thin, npFe(sup 0)-rich surface deposit during or immediately after the scan cycle. Nanocrystalline olivine that grew within the melt layer as it formed and cooled is similar in volume and microstructure to what we have observed in the impact melt lining of a micrometeorite impact crater in olivine. This suggest the time-temperature relations attained in the laser sample may not be too different from a micrometeorite impact. Our TEM observations, however, do not show evidence for the same level of mechanical dam-age (e.g., fracturing) seen around the natural micrometeorite crater

    Efficacy of pimobendan in the prevention of congestive heart failure or sudden death in doberman pinschers with preclinical dilated cardiomyopathy (the PROTECT study)

    Get PDF
    <p>Background: The benefit of pimobendan in delaying the progression of preclinical dilated cardiomyopathy (DCM) in Dobermans is not reported.</p> <p>Hypothesis: That chronic oral administration of pimobendan to Dobermans with preclinical DCM will delay the onset of CHF or sudden death and improve survival.</p> <p>Animals: Seventy-six client-owned Dobermans recruited at 10 centers in the UK and North America.</p> <p>Methods: The trial was a randomized, blinded, placebo-controlled, parallel group multicenter study. Dogs were allocated in a 1:1 ratio to receive pimobendan (Vetmedin capsules) or visually identical placebo.</p> <p>The composite primary endpoint was prospectively defined as either onset of CHF or sudden death. Time to death from all causes was a secondary endpoint.</p> <p>Results: The proportion of dogs reaching the primary endpoint was not significantly different between groups (P = .1). The median time to the primary endpoint (onset of CHF or sudden death) was significantly longer in the pimobendan (718 days, IQR 441–1152 days) versus the placebo group (441 days, IQR 151–641 days) (log-rank P = 0.0088). The median survival time was significantly longer in the pimobendan (623 days, IQR 491–1531 days) versus the placebo group (466 days, IQR 236–710 days) (log-rank P = .034).</p> <p>Conclusion and Clinical Importance: The administration of pimobendan to Dobermans with preclinical DCM prolongs the time to the onset of clinical signs and extends survival. Treatment of dogs in the preclinical phase of this common cardiovascular disorder with pimobendan can lead to improved outcome.</p&gt

    Phenotypic description of cardiac findings in a population of Dogue de Bordeaux with an emphasis on atrial fibrillation

    Get PDF
    The aim of this study was to describe the clinical phenotype of Dogue de Bordeaux (DdB) referred for cardiac investigation, with particular reference to the prevalence of atrial fibrillation and associated features. Review of canine medical records of two United Kingdom veterinary referral hospitals identified 64 DdB with available echocardiographic and electrocardiographic (ECG)/Holter data. Atrial fibrillation was documented in 25 (39%) dogs and supraventricular tachycardia was recorded in five (7.8%) dogs. In a subset of 34 dogs, excluding congenital heart disease (n = 17), presence of a cardiac mass (n = 7) and non-cardiac neoplasia (n = 6), 19 (56%) dogs had atrial fibrillation, with a median heart rate of 200 beats per min (bpm) on presentation. Atrial fibrillation was inconsistently associated with cardiac chamber remodelling, but was frequently associated with systolic dysfunction (13/19, 68.4%) and right sided atrial or ventricular dilatation (14/19, 73.7%) in dogs with atrial fibrillation in this subset. No dogs in this subset had right sided atrial or ventricular dilatation in the absence of supraventricular arrhythmia or systolic dysfunction. The absence of structural heart disease in some dogs with supraventricular arrhythmias suggests that an underlying primary arrhythmic process might be responsible for initiating remodelling, although a primary cardiomyopathy cannot be ruled out

    Compositional and Microstructural Evolution of Olivine Under Multiple-Cycle Pulsed Laser Irradiation as Revealed by FIB/Field-Emission TEM

    Get PDF
    The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation
    corecore