1,031 research outputs found
The Coulomb-Higgs transition of the three-parameter U(1)-Higgs model
We find a first order Coulomb--Higgs phase transition at moderately large
values of the coupling , and no evidence for a change of order at any
finite value of it.Comment: 3 pages, uuencoded compressed ps file. Contribution to Lattice '9
Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3
Recent works have shown that the domain walls of room-temperature
multiferroic BiFeO3 (BFO) thin films can display distinct and promising
functionalities. It is thus important to understand the mechanisms underlying
domain formation in these films. High-resolution x-ray diffraction and
piezo-force microscopy, combined with first-principles simulations, have
allowed us to characterize both the atomic and domain structure of BFO films
grown under compressive strain on (001)-SrTiO3, as a function of thickness. We
derive a twining model that describes the experimental observations and
explains why the 71o domain walls are the ones commonly observed in these
films. This understanding provides us with a new degree of freedom to control
the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem
to display well. A proper version can be found in the source fil
Universal Finite Size Scaling Functions in the 3D Ising Spin Glass
We study the three-dimensional Edwards-Anderson model with binary
interactions by Monte Carlo simulations. Direct evidence of finite-size scaling
is provided, and the universal finite-size scaling functions are determined.
Monte Carlo data are extrapolated to infinite volume with an iterative
procedure up to correlation lengths xi \approx 140. The infinite volume data
are consistent with a conventional power law singularity at finite temperature
Tc. Taking into account corrections to scaling, we find Tc = 1.156 +/- 0.015,
nu = 1.8 +/- 0.2 and eta = -0.26 +/- 0.04. The data are also consistent with an
exponential singularity at finite Tc, but not with an exponential singularity
at zero temperature.Comment: 4 pages, Revtex, 4 postscript figures include
Evaluation of α,β-unsaturated ketones as antileishmanial agents
In this study, we assessed the antileishmanial activity of 126 α,β-unsaturated ketones. The compounds NC901, NC884, and NC2459 showed high leishmanicidal activity for both the extracellular (50% effective concentration [EC(50)], 456 nM, 1,122 nM, and 20 nM, respectively) and intracellular (EC(50), 1,870 nM, 937 nM, and 625 nM, respectively) forms of Leishmania major propagated in macrophages, with little or no toxicity to mammalian cells. Bioluminescent imaging of parasite replication showed that all three compounds reduced the parasite burden in the murine model, with no apparent toxicity
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells
With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent
- …
