40 research outputs found

    Multiple Conclusion Rules in Logics with the Disjunction Property

    Full text link
    We prove that for the intermediate logics with the disjunction property any basis of admissible rules can be reduced to a basis of admissible m-rules (multiple-conclusion rules), and every basis of admissible m-rules can be reduced to a basis of admissible rules. These results can be generalized to a broad class of logics including positive logic and its extensions, Johansson logic, normal extensions of S4, n-transitive logics and intuitionistic modal logics

    Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility

    Get PDF
    © 2015, Springer Basel. Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – for restricted cases, to show the problems arising in the course of study

    Hypersequent Systems for the Admissible Rules of Modal and Intermediate Logics

    No full text
    Abstract. The admissible rules of a logic are those rules under which the set of theorems of the logic is closed. In a previous paper by the authors, formal systems for deriving the admissible rules of Intuitionistic Logic and a class of modal logics were defined in a proof-theoretic framework where the basic objects of the systems are sequent rules. Here, the framework is extended to cover derivability of the admissible rules of intermediate logics and a wider class of modal logics, in this case, by taking hypersequent rules as the basic objects.

    A note on extensions: admissible rules via semantics

    No full text
    Any intermediate logic with the disjunction property admits the Visser rules if and only if it has the extension property. This equivalence restricts nicely to the extension property up to n. In this paper we demonstrate that the same goes even when omitting the rule ex falso quod libet, that is, working over minimal rather than intuitionistic logic. We lay the groundwork for providing a basis of admissibility for minimal logic, and tie the admissibility of the Mints-Skura rule to the extension property in a stratified manner
    corecore