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Abstract. Many intermediate logics, even extremely well-behaved ones such as IPC, lack

the finite model property for admissible rules. We give conditions under which this failure

holds. We show that frames which validate all admissible rules necessarily satisfy a certain

closure condition, and we prove that this condition, in the finite case, ensures that the

frame is of width 2. Finally, we indicate how this result is related to some classical results

on finite, free Heyting algebras.

Keywords: Intermediate logics, Admissible rules, Finite model property, Projective Heyt-

ing algebras.

1. Introduction

How does one recognise the non-theorems of a logic? In many intermediate
logics, it suffices to inspect all finite models of a certain size, bounded in some
way by the formula under consideration. This desirable result is unattainable
in many an intermediate logic when generalising from the derivability of
propositions to the admissibility of rules.

The admissible rules of a logic are those rules under which the logic’s
theorems are closed. Friedman [8, Problem 4] asked whether the set of all
admissible rules of IPC is decidable, which was confirmed by Rybakov [17].
Much later, an alternative proof making use of a characterisation of finitely
presented projective Heyting algebras was given by Ghilardi [9]. If the admis-
sible rules of IPC, like the theorems of IPC, would be both sound and com-
plete with respect to a certain set of finite frames, then the above could
surely have been attained by simpler means.

The aim of this paper is to provide a new proof showing that, in particu-
lar, there exists no class of finite frames with respect to which the admissi-
ble rules of IPC are both sound and complete. We give sufficient conditions
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under which the same conclusion can be attained for many intermediate log-
ics. Our conditions are more lenient than those given earlier by Fedorishin
and Ivanov [7].

The first hint that finite frames are unlikely to suffice as semantics for
the admissible rules of IPC came from Citkin [4]. He showed that any finite
model of all admissible rules necessarily is of an extremely restricted shape,
making use of a particular generalisation of a rule introduced by Mints [16].

(z1 → x) → z1 ∨ z2
/(

(z1 → x) → z1
) ∨ (

(z1 → x) → z2
)

(1)

More precisely, a finite Heyting algebra that validates all admissible rules
of IPC must be a subdirect product of projective Heyting algebras. This
connection was not made explicit by Citkin, but it does follow readily from
[2]. Baker [1, Corollary 3.10] had already shown that the equational theory
of the class of finite projective Heyting algebras strictly extends that of all
Heyting algebras. These observations combined lead to a proof of the failure
of the finite model property for admissibility, as we indicate in Section 4.

Rybakov, Kiyatkin and Oner [18] proved the failure of the finite model
property for admissible rules in a great variety of modal logics, including
K4, S4 and GL. Moreover, they describe conditions under which the finite
model property for admissible rules does hold. Building on these techniques,
Fedorishin and Ivanov [7] proved the failure of the finite model property for
admissibility in many intermediate logics. Their argument requires a fair
amount of machinery, which we are able to hide away. Distilling some of the
ingredients from the (admittedly quite colloquial) historical reconstruction
above, we present an elementary proof of the failure of finite frames. It
is our conviction that the argument, as presented below, can be readily
understood by undergraduate students with a cursory background in modal
or intuitionistic logic.

In Section 2, we introduce the basic notation, and give a semantic descrip-
tion of a modest generalisation of Mints’ rule. This description is quite simi-
lar to that of Iemhoff [14, Theorem 4.6], who introduces the “offspring prop-
erty”. The difference between this description and ours is twofold. First, our
description is given on a fixed frame, as opposed to on the totality of all
models. Second, we stratify the offspring property over the natural num-
bers, so as to be able to retrieve Mints’ rule from the more general scheme
under consideration.

In Section 3, we explain how the binary case of the offspring property,
coupled with the presence of certain configurations of points, is sufficient to
construct an infinity of points within a model. We, quite literally, show that
the validity of a certain admissible rule on a frame induces infinity within it.
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This observation is then employed in Section 4 to prove our main theorem,
which shows that finite frames fail to be both sound and complete with
respect to the admissible rules of any intermediate logic that admits Mints’
rule and that is either of width greater than two or is strictly below Scott’s
logic.

2. Semantics for Admissible Rules

We consider the propositional language generated by a fixed, countable infin-
ity of variables, denoted P, as defined by the BNF below. We denote propo-
sitional variables by x, y, z.

L ::= � | ⊥ | P | L ∨ L | L ∧ L | L → L
Formulae are elements of L, and will be denoted by φ, ψ. A substitution is
a mapping from formulae to formulae that respects all connectives.

The logics under consideration are consistent axiomatic extensions of
the intuitionistic propositional calculus IPC, as specified fully below. For
convenience’s sake, we think of a logic as determined by its theorems.

Definition 2.1. (Intermediate Logic) An intermediate logic Λ is a proper
subset of the set of all formulae that contains all theorems of IPC, satisfying
the following two conditions.

modus ponens if φ → ψ ∈ Λ and φ ∈ Λ, then ψ ∈ Λ.

substitution if φ ∈ Λ and σ is a substitution, then σ(φ) ∈ Λ.

The elements of an intermediate logic Λ are said to be the theorems of
Λ. We say that two formulae φ, ψ are equivalent in an intermediate logic Λ
whenever φ → ψ and ψ → ψ are both theorems.

There are several ways one can think of admissible rules. In the introduc-
tion, we alluded to the definition as given below, albeit informally. Were the
logic at hand to be defined by means of a consequence relation, one could
have defined a rule to be admissible precisely when adjoining it to said con-
sequence relation does not lead to an enlargement of the set of theorems.
When suitably formalised, these two descriptions coincide, as explained in
[15, Corollary 4.2].

Definition 2.2. (Admissible Rule) A rule φ/ψ is said to be admissible in
Λ whenever σ(φ) ∈ Λ entails σ(ψ) ∈ Λ for all substitutions σ.
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The following definition is wholly standard, we merely give it to fix nota-
tion. For more details and background we refer to [20]. We write X to mean
a set of variables, and P(X) denotes its power set.

Definition 2.3. (Frames and Models) A Kripke frame (or frame, for short)
is a partial order K = 〈K, ≤〉. A model is a pair 〈K, V 〉, where K is a frame
and V : K → P(X) is a monotonic map, called the valuation. We define the
validity of a formula φ at a point k, denoted V, k � φ, as usual. Whenever
φ is such that V, k � φ holds for all k ∈ K, we denote this by V � φ.

Definition 2.4. (Semantics) A rule φ/ψ is said to be valid on a frame
K whenever V, K � φ implies V, K � ψ for all valuations V : K → P(X),
where X is the set of variables contained in either φ or ψ.

The notion below is taken from [10, p. 107]. It is helpful to think of the
following two examples. First, if k ∈ K is a node, and W are its immediate
successors (the nodes immediately following it in the order of K), then one
can readily infer that W κ k ought to hold. Second, ∅ κ k holds whenever
k is a maximal node in k. Finally, note that {k} κ k holds regardless of the
choice of k ∈ K. This in contrast to the notion of a total cover as employed
in [12].

Definition 2.5. (Cover) Let K be a partial order, let W ⊆ K be an arbi-
trary subset, and let k ∈ K be a point. We say that W is a cover of k,
denoted W κ k, whenever the following equivalence holds for all l ∈ K:

k ≤ l if and only if k = l or w ≤ l for some w ∈ W . (2)

Mints [16] introduced a particular rule that is admissible in IPC, but
the implication from its antecedent to its conclusion is most certainly not
a theorem. This rule was shortly thereafter generalised by Citkin [4] into
something similar to the rule below, when one instantiates n as 2.1

Variants of this rule occur throughout the literature on admissibility.
Let us but mention three quite distinct representatives. Citkin [5] was the
first to consider it in its full generality. A similar rule was considered by
Skura [19], who used it to characterise IPC among all intermediate logics.
Finally, Iemhoff [13] gave a variant of this rule scheme, and showed that all
admissible rules of IPC can be generated on the basis of this scheme.

1 Note that, when n = 2, (3) can clearly be retrieved from (1), when adding y∨ to both
this latter rule’s antecedent and conclusion. The converse is also possible, by observing
that z1 → x is equivalent to (z1 ∨ z2) → (z1 → x), as has been remarked by T. Skura.
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y ∨
⎛

⎝

(
n∨

i=1

zi → x

)

→
⎛

⎝
n∨

j=1

zj

⎞

⎠

⎞

⎠

/

y ∨
⎛

⎝
n∨

j=1

(
n∨

i=1

zi → x

)

→ zj

⎞

⎠ (3)

The rule (3) is admissible in IPC, as follows immediately from [14, The-
orem 4.6]. The same holds for BBn, the logic of branching degree at most n
as specified by [3, Proposition 2.41], for each n ≥ 2.

Any frame that validates (3) reflects this in its order structure. In Theo-
rem 2.7 below, we pin down this reflection, and show it to be both a neces-
sary and sufficient condition for validating (3). Before we proceed, we first
introduce the following property inspired by Iemhoff [14, p. 68].

Definition 2.6. (Offspring Property) Let K be a frame. We say that K
enjoys the n-ary offspring property whenever for every l ∈ K and all l ≤
w1, . . . , wn there exist k, k+ ∈ K such that {w1, . . . , wn} κ k and k+ ≤ k, l.
In particular, if n = 2 then we speak of the binary offspring property.

Theorem 2.7. Let K be a finite frame. The following statements are equiv-
alent for any n ∈ N.

1. The rule (3) is valid on the frame K;

2. The frame K enjoys the binary offspring property.

We briefly go over two special cases. In the case that n = 0, both the
antecedent and the consequent of the rule (3) are equivalent to x. The 0-ary
offspring property can be seen to hold, as there surely is a k ∈ K satisfying
both l ≤ k and ∅ κ k. The case that n = 1 is trivial as well, for the antecedent
and the consequent of the rule (3) are equivalent to one another. In this case,
the 1-ary offspring property can be satisfied by choosing k, k+ = l. Hence,
the nullary and unary offspring property are always satisfied.
Proof of Theorem 2.7 Suppose that statement 2 holds. We proceed by con-
traposition, so suppose there exists some valuation V : K → P(X) such
that:

V � y ∨
⎛

⎝

(
n∨

i=1

zi → x

)

→
⎛

⎝
n∨

j=1

zj

⎞

⎠

⎞

⎠ , (4)

V �� y ∨
⎛

⎝
n∨

j=1

(
n∨

i=1

zi → x

)

→ zj

⎞

⎠ . (5)
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Through (5), we are guaranteed the existence of points k ≤ w1, . . . , wn

such that k �� y and

V, wj �
(

n∨

i=1

zi → x

)

and V, wj �� zj for each j = 1, . . . , n. (6)

As K enjoys the n-ary offspring property, we know there exist k, k+ ∈ K
such that {w1, . . . , wn} κ k and k+ ≤ k, l. One may verify that V falsifies
the antecedent of (3) at k+, contradicting (4). This proves that statement
1 holds.

The implication from statement 2 to statement 1 is straightforward. Sup-
pose statement 1 holds, and let l ∈ K and l ≤ w1, . . . , wn be arbitrary. We
define a valuation V : K → P(K) such that:

V, h � x iff wi ≤ h for some i = 1, . . . , n,
V, h � y iff h �≤ l,
V, h � zi iff h �≤ wi.

It is an easy matter to verify that V, wj �� (
∨n

i=1 zi → x) → zj for each
j = 1, . . . , n. It is, moreover, clear that V, l �� y. As a consequence, we
know that V does not validate the consequent of (3). By assumption, the
antecedent of this rule must also be false.

We thus obtain a point k+ ∈ K such that

V, k+ �� y ∨
(

n∨

i=1

zi → x

)

→
n∨

j=1

zj .

From the falsehood of the left-hand disjunct, we can deduce that k+ ≤ l.
Similarly, the falsehood of the right-hand disjunct yields a point k′ ≥ k+

satisfying:

V, k′ �
n∨

i=1

zi → x and V, k′ ��
n∨

j=1

zj .

The latter conjunct entails that k′ ≤ wj for all j = 1, . . . , n. Consider a
maximal such point, above k′, and call it k. As we assumed K to be finite,
such a point must exist. We claim that {w1, . . . , wn} κ k.

In order to prove this claim, assume that h ≥ k and wi �≤ h for all
i = 1, . . . , n. If h ≤ wi holds for all i = 1, . . . , n, then the maximality
condition on k ensures that h = k. We can thus assume this not to hold,
which, in turn, shows that V, h �

∨n
i=1 zi. By assumption, we now obtain

V, h � x, a contradiction. We have thus constructed the desired points k
and k+, proving statement 2.



Finite Frames Fail 1197

3. Sufficient Conditions for Infinity

Many properties of frames can be codified by means of the validity of axioms.
In this section, we investigate two distinct such conditions, whose corre-
sponding axioms axiomatize the well-known intermediate logic of bounded
width three and Scott’s logic. Both of these conditions are shown to not hold
on finite frames satisfying the binary offspring property. In the subsequent
section, we use this information to show that certain classes of intermediate
logics can not have the finite model property for their admissible rules.

The first property we investigate is the width of a frame, as defined
below. The axiomatic counterpart of this semantic property is given in Def-
inition 3.2. We omit the proof as it is wholly standard.

Definition 3.1. (Width) A frame K is said to be of width n whenever for
each k ∈ K and all l0, l1, . . . , ln ≥ k there exist some i �= j such that li ≤ lj .

Theorem 3.2. ([3, Proposition 2.3.9]) A frame is of width n exactly if every
valuation on it is a model of the logic BWn := IPC + bwn.

bwn :=
n∨

i=0

⎛

⎝xi →
∨

j �=i

xj

⎞

⎠ (7)

Consider a frame that is not of width 2. By the very definition of width,
we now know that the three-fork, as depicted in Fig. 1, must occur within
this frame. The following lemma shows that the presence of the three-fork
yields an infinity of points whenever the frame enjoys the binary offspring
property. Pictorially, the proof of the lemma is straightforward; Fig. 2 says
it all.

Lemma 3.3. Let K be a frame that has the binary offspring property and
that is not of width 2. Now, K must be infinite.

Proof. We will prove that there exists a sequence of subsets W0, W1, . . . ⊆
K satisfying, for each n, the following three properties:

1. The elements in Wi are pairwise incomparable

Figure 1. The three-fork
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Figure 2. Extending the three-fork with one layer

2. There exists a k ∈ K such that Wi ⊆ ↑k for each i = 0, 1, . . . , n

3. Wj ⊂ ↑Wi for all j < i ≤ n

Assuming such a sequence, it is immediate that
⋃

i Wi is infinite, proving
the desired result.

We need but show that one can construct said sequence, which we readily
do by induction along its length. In the base case there is little to do. As K
is not of width two, there must be points k, w0, w1, w2 ∈ K such that k ≤
w0, w1, w2, satisfying the additional condition that W0 := {w0, w1, w2} be
an anti-chain. Properties 1 and 2 follow immediately from our assumption,
and property 3 holds vacuously.

Now, suppose we have such a chain W0, . . . , Wn, satisfying the three
conditions. By property 2, there exists a point k+

0 ≤ w for all w ∈ Wn. Note
that there are precisely three subsets of size two within Wn, let us call these
S1, S2 and S3. Through the offspring property, we know of six points kj , k

+
j

with j = 1, 2, 3, satisfying k+
i+1 ≤ ki, k

+
i and Wi κ ki for i = 1, 2, 3. We claim

that Wn+1 = {k1, k2, k3} does the trick.
Property 1 holds through immediate verification. Indeed, suppose that

ki < kj holds for some j �= i. Recall that Si κ ki, hence there must be some
s ∈ Si such that s ≤ kj . Furthermore, we observe that Sj ⊆ ↑kj ⊆ ↑s and
Sj − {s} �= ∅. These two observations combine to prove that two elements
in Wn are comparable, a contradiction by induction.

To show property 2, simply observe that k = k+
3 does the trick. Finally,

property 3 holds immediately by construction.

The property “being of width 2” is formulated in a negative manner: a
frame satisfies this property in case a certain configuration of nodes does
not exist within it. We now turn to the second property we consider in
this section, which is also formulated negatively. To state the definition, we
introduce the frame F9 as in Fig. 3 and we define what it means to be a
morphism of frames. We subsequently state the well-known Theorem 3.6,
see for instance [3, Exercise 2.12].
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k+ l

k−

h

Figure 3. The frame F9

Figure 4. Extending F9 with one layer

Definition 3.4. (Morphism of Frames) A morphism of frames f : K → L
is a monotonic map function where f(U) is an upset for each upset U ⊆ K.

Definition 3.5. (Scott Frame) A frame K is said to be a Scott frame if for
all upsets U ⊆ K there exists no morphism of frames f : U → F9.

Theorem 3.6. A frame is a Scott frame precisely if every valuation on it is
a model of the intermediate logic ST := IPC + st, where:

st :=
(
(¬¬x → x) → x ∨ ¬x

) → ¬x ∨ ¬¬x.

Analogous to Lemma 3.3, we can prove that no finite frame with the
binary offspring property can be a Scott frame. We do not directly prove
this lemma, but instead proceed via Lemma 3.8. Subsequently, we show how
this more general lemma can be applied to prove Lemma 3.7. The reader will
be able to readily see how the same lemma can be used to prove Lemma 3.3
as well. Moreover, the reader can reconstruct a direct proof of Lemma 3.7
following the steps sketched in Fig. 4.

Lemma 3.7. Let K be a frame that has the binary offspring property and
that is not a Scott frame. Now, K must be infinite.

Lemma 3.8. Let K be a frame with the binary offspring property. Suppose
there exist points k+, k−, l and h such that:
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1. k+ and l are incomparable;

2. k− and l are incomparable;

3. k+ ≤ k− does not hold;

4. k+, k−, l ≥ h;

Now, K is infinite.

Proof. We construct four sequences of points:

(k+
i )i∈N, (k−

i )i∈N, (l)i∈N, (h)i∈N,

satisfying the obvious adaptation of the criteria mentioned above and the
additional constraint that l0 > l1 > . . .. This latter condition immediately
entails the desired. Suppose the sequences have been constructed for i ∈ N

satisfying i ≤ n. Because hn ≤ k−
n , ln, we know there to exist points k−

n+1

and h′
n+1 such that:

{
k−
n , ln

}
κ k−

n+1 and h′
n+1 ≤ k−

n+1, hn. (8)

Moreover, because h′
n+1 ≤ k+

n , l is known to hold, there must exist points
ln+1 and hn+1 satisfying:

{
k+
n , ln

}
κ ln+1 and hn+1 ≤ ln+1, h

′
n+1. (9)

We define k+
n+1 := k−

n , which finishes the definition of the (n + 1)th

elements of the four sequences. Let us now verify that the four conditions
hold.

We start with property 1 and proceed by contradiction, so we assume that
k+
n+1 and ln+1 are comparable. We distinguish two cases: either k+

n+1 ≤ ln+1,
or k+

n+1 > ln+1. In the former case, note that ln+1 ≤ ln holds, thus this
ensures k+

n+1 = k−
n ≤ ln which contradicts property 2. In the latter case,

we observe that k−
n = k+

n+1 ≥ k+
n or k−

n = k+
n+1 ≥ ln which contradict

properties 3 and 2 respectively.
Let us now turn to property 2. We proceed by contradiction and thus

assume that k−
n+1 and ln+1 are comparable. We distinguish three cases:

either k−
n+1 = ln+1, or k−

n+1 < ln+1, or k−
n+1 > ln+1. In the first case, (8)

proves that:

ln+1 = k−
n+1 ≤ k−

n = k+
n+1,

contradicting property 1 as proven in the above paragraph. In the second
case, one uses (8) to readily derive that at least one of ln ≤ ln+1 or k−

n ≤ ln+1

must hold. Yet the former ensures ln ≤ k+
n and the latter proves k−

n ≤
ln, both through (9), contradicting properties 1 and 2 respectively. In the
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third case, we observe that (9) leads to the validity of k+
n ≤ k−

n+1 or ln ≤
k−
n+1. Because (8) shows that k−

n+1 ≤ k−
n , we know the former to contradict

property 3. Similarly, the latter contradicts property 1 as k−
n+1 ≤ k−

n . These
observations combined prove property 2.

To prove property 3, it suffices to note that k+
n+1 ≤ k−

n+1 would yield

k−
n = k+

n+1 ≤ k−
n+1 ≤ ln

by (8), violating property 2.
The validity of property 4 is straightforward. To conclude the argument,

we prove that ln+1 > ln. Indeed, suppose that ln = ln+1. It readily follows
from (9) that ln ≤ k+

n , a contradiction to property 1. We thus have shown
K to be infinite.

Proof of Lemma 3.7 Let U ⊆ K be an upset and suppose that f : U → F9

is a morphism of frames. We know of a ho ∈ U such that f(ho) = h.
Subsequently, we choose k+

o , k−
o , lo ≥ h0 such that:

f(k+
o ) = k+, f(k−

o ) = k−, f(lo) = l.

We need but show that the conditions of Lemma 3.8 apply to the four
points k+

o , k−
o , lo, ho. Yet this is immediate by the very definition of a

morphism of frames, proving the desired.

4. Finite Frames Fail

We now have sufficient machinery to prove the main theorem. Its proof is a
simple composition of the elementary results gathered above.

Theorem 4.1. Let Λ be an intermediate logic in which the rule (3) is admis-
sible. Suppose there exists a set of finite frames K with respect to which the
admissible rules of Λ are both sound and complete.2 Now, Λ extends bw2

and ST.

Proof. We proceed by contradiction, so suppose that Λ does not extend
both bw2 and ST. Consider the rule �/χ for χ = bw2, st. Note that this
rule is admissible precisely if χ ∈ Λ, which we know to not be the case for
at least one choice of χ = bw2, st. Fix this choice in the following.

2 Note that one could strengthen the theorem by merely assuming that K is complete
with respect to the theorems of Λ and sound with respect to the admissible rules of Λ.
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We assumed that K is a class of finite frames such that the following
holds for all formulae φ and ψ.

K � φ/ψ for all K ∈ K iff φ/ψ is admissible in Λ.

We thus know of a frame K ∈ K and a model V : K → P(X) such that
V, K � � yet V, K �� χ. As the rule (3) was assumed to be admissible in Λ,
we know that this rule is valid on K. By Theorem 2.7, it follows that K has
the binary offspring property.

Combining Theorem 3.2 and Theorem 3.6, we know that K is either not
of width 2 or K is not a Scott frame. Through Lemma 3.3 or Lemma 3.7,
we can now infer that K is infinite, quod non.

The theorems immediately entail the corollary below. Here BBn refers
to the logic of bounded branching degree at most n, also known as the
(n − 1)th Gabbay–de Jongh logic. As an example, BB2 is the logic of finite
binary trees.

Corollary 4.2. Neither IPC nor any of the logics BBn for n ≥ 2 have the
finite model property for admissibility.

Interestingly, much of Theorem 4.1 can be retrieved solely using results
from the seventies. The notion of projectivity is as in [2].

Theorem 4.3. A finite, subdirectly irreducible Heyting algebra is projective
if and only if it satisfies the rule (3) for n = 2.

Proof. Immediate via [2, Theorem 4.10] and [4, Theorem 2].

Theorem 4.4. ([1, Corollary 3.10]) The equational class generated by the
finite, projective Heyting algebras is axiomatized by the equation:3

(
(y → x) ∨ (x → y ∨ z) ∨ z → y

)
= �. (10)

In the following, we make liberal use of the duality between finite Kripke
frames and finite Heyting algebras, as given in [6].

Corollary 4.5. Any class of finite, rooted frames that is sound with respect
to all admissible rules of IPC satisfies the axiom (10), and is thus not com-
plete with respect to admissibility.

3 The actual equation used by Baker equals, up to renaming, the following:
(
x → y

) ∨ (
y → x

) ∨ (
x → y ∨ z

) ∨ (
(y ∨ z) → x

) ∨ (
(y ∨ z) → y

)
= �.

After the anonymous referee pointed out that is was redundant, we arrived at the
equation given here in a conversation with Dick de Jongh.
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Proof. Suppose K is a class of finite, rooted frames that is sound with
respect to IPC. Through the duality, this corresponds to a class of finite,
subdirectly irreducible Heyting algebras. By Theorem 4.3, all elements of K
are finite, projective Heyting algebras. Consequently, per Theorem 4.4, K
contains no model on which (10) is invalid. Yet this is not a theorem of IPC,
proving the desired result.
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