29,057 research outputs found

    Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles

    Full text link
    We investigate the collective behavior of self-propelled particles (SPPs) undergoing competitive processes of pattern formation and rotational relaxation of their self-propulsion velocities. In full accordance with previous work, we observe transitions between different steady states of the SPPs caused by the intricate interplay among the involved effects of pattern formation, orientational order, and coupling between the SPP density and orientation fields. Based on rigorous analytical and numerical calculations, we prove that the rate of the orientational relaxation of the SPP velocity field is the main factor determining the steady states of the SPP system. Further, we determine the boundaries between domains in the parameter plane that delineate qualitatively different resting and moving states. In addition, we analytically calculate the collective velocity v⃗\vec{v} of the SPPs and show that it perfectly agrees with our numerical results. We quantitatively demonstrate that v⃗\vec{v} does not vanish upon approaching the transition boundary between the moving pattern and homogeneous steady states.Comment: 3 Figure

    Ambipolar Filamentation of Turbulent Magnetic Fields : A numerical simulation

    Get PDF
    We present the results of a 2-D, two fluid (ions and neutrals) simulation of the ambipolar filamentation process, in which a magnetized, weakly ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, so that the initial ionization inhomogeneities are strongly amplified. This effect, the ambipolar filamentation, causes the ions and the magnetic flux to condense and separate from the neutrals, resulting in a filamentary structure.Comment: 8 pages, 6 figures, accepted for publication in A&

    Electron states in a one-dimensional random binary alloy

    Full text link
    We present a model for alloys of compound semiconductors by introducing a one-dimensional binary random system where impurities are placed in one sublattice while host atoms lie on the other sublattice. The source of disorder is the stochastic fluctuation of the impurity energy from site to site. Although the system is one-dimensional and random, we demonstrate analytical and numerically the existence of extended states in the neighborhood of a given resonant energy, which match that of the host atoms.Comment: 11 pages, REVTeX, 3 PostScript figure

    Test of the fluctuation theorem for stochastic entropy production in a nonequilibrium steady state

    Get PDF
    We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seifert's integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.Comment: Accepted in Phys. Rev.

    Construction of Simulation Wavefunctions for Aqueous Species: D3O+

    Full text link
    This paper investigates Monte Carlo techniques for construction of compact wavefunctions for the internal atomic motion of the D3O+ ion. The polarization force field models of Stillinger, et al and of Ojamae, et al. were used. Initial pair product wavefunctions were obtained from the asymptotic high temperature many-body density matrix after contraction to atom pairs using Metropolis Monte Carlo. Subsequent characterization shows these pair product wavefunctions to be well optimized for atom pair correlations despite that fact that the predicted zero point energies are too high. The pair product wavefunctions are suitable to use within variational Monte Carlo, including excited states, and density matrix Monte Carlo calculations. Together with the pair product wavefunctions, the traditional variational theorem permits identification of wavefunction features with significant potential for further optimization. The most important explicit correlation variable found for the D3O+ ion was the vector triple product {\bf r}OD1⋅_{OD1}\cdot({\bf r}OD2×_{OD2}\times{\bf r}OD3_{OD3}). Variational Monte Carlo with 9 of such explicitly correlated functions yielded a ground state wavefunction with an error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte

    Tight coupling in thermal Brownian motors

    Get PDF
    We study analytically a thermal Brownian motor model and calculate exactly the Onsager coefficients. We show how the reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Such condition implies that the device is built with tight coupling. This explains why Carnot's efficiency can be achieved in the limit of infinitely slow velocities. We also prove that the efficiency at maximum power has the maximum possible value, which corresponds to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian refrigerator

    Lifetime Measurement of the 6s Level of Rubidium

    Full text link
    We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.Comment: 10 pages, 9 figure

    A study of the Higgs and confining phases in Euclidean SU(2) Yang-Mills theories in 3d by taking into account the Gribov horizon

    Get PDF
    We study SU(2) three-dimensional Yang-Mills theories in presence of Higgs fields in the light of the Gribov phenomenon. By restricting the domain of integration in the functional integral to the first Gribov horizon, we are able to discuss a kind of transition between the Higgs and the confining phase in a semi-classical approximation. Both adjoint and fundamental representation for the Higgs field are considered, leading to a different phase structure.Comment: 12 pages. Version accepted for publication in the EPJ
    • …
    corecore