29,057 research outputs found
Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles
We investigate the collective behavior of self-propelled particles (SPPs)
undergoing competitive processes of pattern formation and rotational relaxation
of their self-propulsion velocities. In full accordance with previous work, we
observe transitions between different steady states of the SPPs caused by the
intricate interplay among the involved effects of pattern formation,
orientational order, and coupling between the SPP density and orientation
fields. Based on rigorous analytical and numerical calculations, we prove that
the rate of the orientational relaxation of the SPP velocity field is the main
factor determining the steady states of the SPP system. Further, we determine
the boundaries between domains in the parameter plane that delineate
qualitatively different resting and moving states. In addition, we analytically
calculate the collective velocity of the SPPs and show that it
perfectly agrees with our numerical results. We quantitatively demonstrate that
does not vanish upon approaching the transition boundary between the
moving pattern and homogeneous steady states.Comment: 3 Figure
Ambipolar Filamentation of Turbulent Magnetic Fields : A numerical simulation
We present the results of a 2-D, two fluid (ions and neutrals) simulation of
the ambipolar filamentation process, in which a magnetized, weakly ionized
plasma is stirred by turbulence in the ambipolar frequency range. The higher
turbulent velocity of the neutrals in the most ionized regions gives rise to a
non-linear force driving them out of these regions, so that the initial
ionization inhomogeneities are strongly amplified. This effect, the ambipolar
filamentation, causes the ions and the magnetic flux to condense and separate
from the neutrals, resulting in a filamentary structure.Comment: 8 pages, 6 figures, accepted for publication in A&
Electron states in a one-dimensional random binary alloy
We present a model for alloys of compound semiconductors by introducing a
one-dimensional binary random system where impurities are placed in one
sublattice while host atoms lie on the other sublattice. The source of disorder
is the stochastic fluctuation of the impurity energy from site to site.
Although the system is one-dimensional and random, we demonstrate analytical
and numerically the existence of extended states in the neighborhood of a given
resonant energy, which match that of the host atoms.Comment: 11 pages, REVTeX, 3 PostScript figure
Test of the fluctuation theorem for stochastic entropy production in a nonequilibrium steady state
We derive a simple closed analytical expression for the total entropy
production along a single stochastic trajectory of a Brownian particle
diffusing on a periodic potential under an external constant force. By
numerical simulations we compute the probability distribution functions of the
entropy and satisfactorily test many of the predictions based on Seifert's
integral fluctuation theorem. The results presented for this simple model
clearly illustrate the practical features and implications derived from such a
result of nonequilibrium statistical mechanics.Comment: Accepted in Phys. Rev.
Construction of Simulation Wavefunctions for Aqueous Species: D3O+
This paper investigates Monte Carlo techniques for construction of compact
wavefunctions for the internal atomic motion of the D3O+ ion. The polarization
force field models of Stillinger, et al and of Ojamae, et al. were used.
Initial pair product wavefunctions were obtained from the asymptotic high
temperature many-body density matrix after contraction to atom pairs using
Metropolis Monte Carlo. Subsequent characterization shows these pair product
wavefunctions to be well optimized for atom pair correlations despite that fact
that the predicted zero point energies are too high. The pair product
wavefunctions are suitable to use within variational Monte Carlo, including
excited states, and density matrix Monte Carlo calculations. Together with the
pair product wavefunctions, the traditional variational theorem permits
identification of wavefunction features with significant potential for further
optimization. The most important explicit correlation variable found for the
D3O+ ion was the vector triple product {\bf r}({\bf
r}{\bf r}). Variational Monte Carlo with 9 of such
explicitly correlated functions yielded a ground state wavefunction with an
error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte
Tight coupling in thermal Brownian motors
We study analytically a thermal Brownian motor model and calculate exactly
the Onsager coefficients. We show how the reciprocity relation holds and that
the determinant of the Onsager matrix vanishes. Such condition implies that the
device is built with tight coupling. This explains why Carnot's efficiency can
be achieved in the limit of infinitely slow velocities. We also prove that the
efficiency at maximum power has the maximum possible value, which corresponds
to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian
refrigerator
Lifetime Measurement of the 6s Level of Rubidium
We present a lifetime measurements of the 6s level of rubidium. We use a
time-correlated single-photon counting technique on two different samples of
rubidium atoms. A vapor cell with variable rubidium density and a sample of
atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves
as the resonant intermediate step for the two step excitation to the 6s level.
We detect the decay of the 6s level through the cascade fluorescence of the
5P_{3/2} level at 780 nm. The two samples have different systematic effects,
but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17
ns.Comment: 10 pages, 9 figure
A study of the Higgs and confining phases in Euclidean SU(2) Yang-Mills theories in 3d by taking into account the Gribov horizon
We study SU(2) three-dimensional Yang-Mills theories in presence of Higgs
fields in the light of the Gribov phenomenon. By restricting the domain of
integration in the functional integral to the first Gribov horizon, we are able
to discuss a kind of transition between the Higgs and the confining phase in a
semi-classical approximation. Both adjoint and fundamental representation for
the Higgs field are considered, leading to a different phase structure.Comment: 12 pages. Version accepted for publication in the EPJ
- …