209 research outputs found

    On the effects of solenoidal and compressive turbulence in prestellar cores

    Full text link
    We present the results of an ensemble of SPH simulations that follow the evolution of prestellar cores for 0.2Myr0.2\,{\rm Myr}. All the cores have the same mass, and start with the same radius, density profile, thermal and turbulent energy. Our purpose is to explore the consequences of varying the fraction of turbulent energy, δsol\delta_\mathrm{sol}, that is solenoidal, as opposed to compressive; specifically we consider δsol=1,2/3,1/3,1/9  and  0\delta_\mathrm{sol}=1,\,2/3,\,1/3,\,1/9\;{\rm and}\;0. For each value of δsol\delta_\mathrm{sol}, we follow ten different realisations of the turbulent velocity field, in order also to have a measure of the stochastic variance blurring any systematic trends. With low δsol(< ⁣1/3)\delta_\mathrm{sol}(<\!1/3) filament fragmentation dominates and delivers relatively high mass stars. Conversely, with high values of δsol(> ⁣1/3)\delta_\mathrm{sol}(>\!1/3) disc fragmentation dominates and delivers relatively low mass stars. There are no discernible systematic trends in the multiplicity statistics obtained with different δsol\delta_\mathrm{sol}.Comment: 9 pages. Accepted by MNRA

    Discs in misaligned binary systems

    Get PDF
    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90 degrees, while the anti-alignment process dominates in systems with the misalignment angle near 0 or 180 degrees. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.Comment: 15 pages, 16 figures, 1 table, accepted for publication in MNRA

    Filamentary fragmentation in a turbulent medium

    Get PDF
    We present the results of smoothed particle hydrodynamic simulations investigating the evolution and fragmentation of filaments that are accreting from a turbulent medium. We show that the presence of turbulence, and the resulting inhomogeneities in the accretion flow, play a significant role in the fragmentation process. Filaments which experience a weakly turbulent accretion flow fragment in a two-tier hierarchical fashion, similar to the fragmentation pattern seen in the Orion Integral Shaped Filament. Increasing the energy in the turbulent velocity field results in more sub-structure within the filaments, and one sees a shift from gravity-dominated fragmentation to turbulence-dominated fragmentation. The sub-structure formed in the filaments is elongated and roughly parallel to the longitudinal axis of the filament, similar to the fibres seen in observations of Taurus, and suggests that the fray and fragment scenario is a possible mechanism for the production of fibres. We show that the formation of these fibre-like structures is linked to the vorticity of the velocity field inside the filament and the filament's accretion from an inhomogeneous medium. Moreover, we find that accretion is able to drive and sustain roughly sonic levels of turbulence inside the filaments, but is not able to prevent radial collapse once the filaments become supercritical. However, the supercritical filaments which contain fibre-like structures do not collapse radially, suggesting that fibrous filaments may not necessarily become radially unstable once they reach the critical line-density.Comment: (Accepted for publication in MNRAS

    Star Formation triggered by cloud-cloud collisions

    Get PDF
    We present the results of SPH simulations in which two clouds, each having mass Mo ⁣= ⁣500MM_{_{\rm{o}}}\!=\!500\,{\rm M}_{_\odot} and radius Ro ⁣= ⁣2pcR_{_{\rm{o}}}\!=\!2\,{\rm pc}, collide head-on at relative velocities of Δvo=2.4,  2.8,  3.2,  3.6  and  4.0kms1\Delta v_{_{\rm{o}}} =2.4,\;2.8,\;3.2,\;3.6\;{\rm and}\;4.0\,{\rm km}\,{\rm s}^{-1}. There is a clear trend with increasing Δvo\Delta v_{_{\rm{o}}}. At low Δvo\Delta v_{_{\rm{o}}}, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-NN cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high Δvo\Delta v_{_{\rm{o}}}, star formation occurs sooner and the shock-compressed layer breaks up into a network of filaments; the pattern of filaments here is more like a spider's web, with several small-NN clusters forming independently of one another, in cores at the intersections of filaments, and since each core only spawns a small number of protostars, there are fewer ejections of protostars. As the relative velocity is increased, the {\it mean} protostellar mass increases, but the {\it maximum} protostellar mass and the width of the mass function both decrease. We use a Minimal Spanning Tree to analyse the spatial distributions of protostars formed at different relative velocities.Comment: 10 pages, 11 figure

    Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure

    Get PDF
    In an earlier paper, we used smoothed particle hydrodynamics (SPH) simulations to explore star formation triggered by head-on collisions between uniform-density 500 M clouds, and showed that there is a critical collision velocity, vCRIT. At collision velocities below vCRIT, a hub-and-spoke mode operates and delivers a monolithic cluster with a broad mass function, including massive stars (M 10 M) formed by competitive accretion. At collision velocities above vCRIT, a spider’s-web mode operates and delivers a loose distribution of small sub-clusters with a relatively narrow mass function and no massive stars. Here we show that,if the head-on assumption is relaxed, vCRIT is reduced. However, if the uniform-density assumption is also relaxed, the collision velocity becomes somewhat less critical: a low collision velocity is still needed to produce a global hub-and-spoke system and a monolithic cluster, but, even at high velocities, large cores – capable of supporting competitive accretion and thereby producing massive stars – can be produced. We conclude that cloud–cloud collisions may be a viable mechanism for forming massive stars – and we show that this might even be the major channel for forming massive stars in the Galaxy

    The importance of episodic accretion for low-mass star formation

    Full text link
    A star acquires much of its mass by accreting material from a disc. Accretion is probably not continuous but episodic. We have developed a method to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in bursts of radiative feedback, during which a protostar is very luminous, and its surrounding disc is heated and stabilised. These bursts typically last only a few hundred years. In contrast, the lulls between bursts may last a few thousand years; during these lulls the luminosity of the protostar is very low, and its disc cools and fragments. Thus, episodic accretion enables the formation of low-mass stars, brown dwarfs and planetary-mass objects by disc fragmentation. If episodic accretion is a common phenomenon among young protostars, then the frequency and duration of accretion bursts may be critical in determining the low-mass end of the stellar initial mass function.Comment: To appear in the Astrophysical Journal. Press release available at: http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/News/News.html Full resolution paper available at http://stacks.iop.org/0004-637X/730/3

    First Investigation of the Combined Impact of Ionizing Radiation and Momentum Winds from a Massive Star on a Self-gravitating Core

    Get PDF
    J. Ngoumou, et al., “First Investigation of the Combined Impact of Ionizing Radiation and Momentum Winds from a Massive Star on a Self-gravitating Core”, The Astrophysical Journal, Vol. 798(1), December 2015. © 2015. The American Astronomical Society.Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas.Peer reviewe
    corecore