189 research outputs found
Hypercalcemia after transplant nephrectomy in a hemodialysis patient: a case report
<p>Abstract</p> <p>Introduction</p> <p>Hypercalcemia is a complication often seen in chronic hemodialysis patients. A rare cause of this condition is sarcoidosis. Its highly variable clinical presentation is challenging. Especially in patients suffering chronic kidney graft failure the nonspecific constitutional symptoms of sarcoidosis like fever, weight loss, arthralgia and fatigue may be easily misleading.</p> <p>Case presentation</p> <p>A 51 year old male developed hypercalcemia, arthralgia and B-symptoms after explantation of his kidney graft because of suspected acute rejection. The removed kidney showed vasculopathy and tubulointerstitial nephritis, which had not been overt in the biopsy taken half a year earlier. Despite explantation and withdrawal of the immunosuppression the patient's general condition deteriorated progressively. A rapid rise in serum calcium finally provoked us to check for sarcoidosis. CT scans of the lungs, broncho-alveolar-lavage and further lab tests confirmed the diagnosis.</p> <p>Conclusion</p> <p>This case demonstrates that withdrawal of immunosuppressive drugs sometimes unmasks sarcoidosis. It should be considered as differential diagnosis even in hemodialysis patients, in whom other reasons for hypercalcemia are much more common.</p
Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia
Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML
Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis
Background Systemic immunoglobulin light-chain (AL) amyloidosis is characterized by deposition of amyloid fibrils of light chains produced by clonal CD38+ plasma cells. Daratumumab, a human CD38-targeting antibody, may improve outcomes for this disease. Methods We randomly assigned patients with newly diagnosed AL amyloidosis to receive six cycles of bortezomib, cyclophosphamide, and dexamethasone either alone (control group) or with subcutaneous daratumumab followed by single-agent daratumumab every 4 weeks for up to 24 cycles (daratumumab group). The primary end point was a hematologic complete response. Results A total of 388 patients underwent randomization. The median follow-up was 11.4 months. The percentage of patients who had a hematologic complete response was significantly higher in the daratumumab group than in the control group (53.3% vs. 18.1%) (relative risk ratio, 2.9; 95% confidence interval [CI], 2.1 to 4.1; P Daratumumab in Light-Chain Amyloidosis In a randomized trial of bortezomib, cyclophosphamide, and dexamethasone as compared with the same therapy plus daratumumab, patients with light-chain amyloidosis who received daratumumab had a higher frequency of hematologic complete response than those who did not (53.3% vs. 18.1%). Deaths were most commonly due to cardiac failure
Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans
BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians
- …