41 research outputs found

    Learning Contact Dynamics using Physically Structured Neural Networks

    Get PDF
    Learning physically structured representations of dynamical systems that include contact between different objects is an important problem for learning-based approaches in robotics. Black-box neural networks can learn to approximately represent discontinuous dynamics, but they typically require large quantities of data and often suffer from pathological behaviour when forecasting for longer time horizons. In this work, we use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects. We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations in settings that are traditionally difficult for black-box approaches and recent physics inspired neural networks. Our results indicate that an idealised form of touch feedback—which is heavily relied upon by biological systems—is a key component of making this learning problem tractable. Together with the inductive biases introduced through the network architectures, our techniques enable accurate learning of contact dynamics from observations

    Long-menu questions in computer-based assessments: a retrospective observational study

    Full text link
    Background: Computer based assessments of paediatrics in our institution use series of clinical cases, where information is progressively delivered to the students in a sequential order. Three types of formats are mainly used: Type A (single answer), Pick N, and Long-menu. Long-menu questions require a long, hidden list of possible answers: based on the student's initial free text response, the program narrows the list, allowing the student to select the answer. This study analyses the psychometric properties of Long-menu questions compared with the two other commonly used formats: Type A and Pick N. Methods: We reviewed the difficulty level and discrimination index of the items in the paediatric exams from 2009 to 2015, and compared the Long-menu questions with the Type A and Pick N questions, using multiple-way analyses of variances. Results: Our dataset included 13 exam sessions with 855 students and 558 items included in the analysis, 212 (38 %) Long-menu, 201 (36 %) Pick N, and 140 Type A (25 %) items. There was a significant format effect associated with both level of difficulty (p = .005) and discrimination index (p < .001). Long-menu questions were easier than Type A questions(+5.2 %; 95 % CI 1.1–9.4 %), and more discriminative than both Type A (+0.07; 95 % CI 0.01–0.14), and Pick N (+0.10; 95 % CI 0.05–0.16) questions. Conclusions: Long-menu questions show good psychometric properties when compared with more common formats such as Type A or Pick N, though confirmatory studies are needed. They provide more variety, reduce the cueing effect, and thus may more closely reflect real life practice than the other item formats inherited from paper-based examination that are used during computer-based assessments

    Online-Systems for Examinations - Part B: Medical assessment alliance - improvement of the complete assessment workflow

    No full text

    Unterschiedliche Aufgabenkomplexität von MC-Fragen: erste fachspezifische Analyse auf syntaktischer Ebene

    No full text

    ItemManagementSystem für die Medizin

    No full text

    Strukturierte Mündliche Prüfungen mit Tablet-Unterstützung

    No full text

    Erfassung der Effekte von Shared decision Making mit Fibromyalgie-Patienten

    No full text

    Strukturierte Mündliche Prüfungen mit Tablet-Unterstützung

    Get PDF
    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21st century for all RCPs considered. Glacier-wide mass-balance rates will drop down to −4 m a−1 w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.Peer Reviewe
    corecore