148 research outputs found

    Pressure-Induced Simultaneous Metal-Insulator and Structural-Phase Transitions in LiH: a Quasiparticle Study

    Full text link
    A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-electron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Identifying Attrition Phases in Survey Data: Applicability and Assessment Study

    Get PDF
    Background: Although Web-based questionnaires are an efficient, increasingly popular mode of data collection, their utility is often challenged by high participant dropout. Researchers can gain insight into potential causes of high participant dropout by analyzing the dropout patterns. Objective: This study proposed the application of and assessed the use of user-specified and existing hypothesis testing methods in a novel setting—survey dropout data—to identify phases of higher or lower survey dropout. Methods: First, we proposed the application of user-specified thresholds to identify abrupt differences in the dropout rate. Second, we proposed the application of 2 existing hypothesis testing methods to detect significant differences in participant dropout. We assessed these methods through a simulation study and through application to a case study, featuring a questionnaire addressing decision-making surrounding cancer screening. Results: The user-specified method set to a low threshold performed best at accurately detecting phases of high attrition in both the simulation study and test case application, although all proposed methods were too sensitive. Conclusions: The user-specified method set to a low threshold correctly identified the attrition phases. Hypothesis testing methods, although sensitive at times, were unable to accurately identify the attrition phases. These results strengthen the case for further development of and research surrounding the science of attrition

    Pressure effect on the in-plane magnetic penetration depth in YBa_2Cu_4O_8

    Full text link
    We report a study of the pressure effect (PE) on the in-plane magnetic field penetration depth lambda_{ab} in YBa_2Cu_4O_8 by means of Meissner fraction measurements. A pronounced PE on lambda_{ab}^{-2}(0) was observed with a maximum relative shift of \Delta\lambda^{-2}_{ab}/\lambda^{-2}_{ab}= 44(3)% at a pressure of 10.2 kbar. It arises from the pressure dependence of the effective in-plane charge carrier mass and pressure induced charge carrier transfer from the CuO chains to the superconducting CuO_2 planes. The present results imply that the charge carriers in YBa_2Cu_4O_8 are coupled to the lattice.Comment: 4pages 3 figure

    Pressure-Induced Two-Color Photoluminescence in MnF2 at Room Temperature

    Get PDF
    A novel two-color photoluminescence (PL) is found in MnF2 at room temperature under high pressure. Contrary to low-temperature PL, PL at room temperature is unusual in transition-metal concentrated materials like MnF2, since the deexcitation process at room temperature is fully governed by energy transfer to nonradiative centers. We show that room-temperature PL in MnF2 originates from two distinct Mn2 emissions in the high-pressure cotunnite phase. The electronic structure and the excited-state dynamics are investigated by time-resolved emission and excitation spectroscopy at high pressure

    A Novel Pzg-NURF Complex Regulates Notch Target Gene Activity

    Get PDF
    The Putzig (Pzg) protein is associated with the NURF nucleosome remodeling complex, thereby promoting Notch target gene expression. Our findings suggest a novel Pzg-NURF complex that is responsible for the epigenetic regulation of Notch target genes

    Exploiting Nucleotide Composition to Engineer Promoters

    Get PDF
    The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a “proof-of-concept” for custom-designing promoters that are suitable for biotechnological and medical applications
    corecore