444 research outputs found

    Aerodynamic analysis of several high throat Mach number inlets for the quiet clean short-haul experimental engine

    Get PDF
    The results of an analytical study to investigate internal and external surface Mach numbers on several inlet geometries for possible application to the nacelle of the Quiet Clean Short-Haul Experimental Engine (QCSEE) are presented. The effects of external forebody geometry and internal lip geometry were illustrated at both low-speed and cruise conditions. Boundary-layer analyses were performed on several geometries to determine if lip flow separation might exist. The results indicated that inner-surface Mach number level and gradient could be reduced with inlets at a 50 deg incidence angle by blunting the external forebody geometry. The external Mach numbers at cruise conditions indicated that a compromise in the external forebody bluntness might be required to satisfy both low-speed and cruise conditions. For a fixed value of bluntness parameter, no lip flow separation was indicated for the 1.46- and 1.57-area-contraction-ratio inlets at low-speed conditions. However, a lip separation condition was obtained with the 1.37-contraction-ratio inlet. The QCSEE nacelle design takeoff operating condition (incidence angle of 50 deg and free-stream Mach number of 0.12) resulted in higher peak surface Mach numbers than the design crosswind (incidence angle of 90 deg and free-stream Mach number of 0.05) or static condition

    On the Evaluation of Gluon Condensate Effects in the Holographic Approach to QCD

    Full text link
    In holographic QCD the effects of gluonic condensate can be encoded in a suitable deformation of the 5D metric. We develop two different methods for the evaluation of first order perturbative corrections to masses and decay constants of vector resonances in 5D Hard-Wall models of QCD due to small deformations of the metric. They are extracted either from a novel compact form for the first order correction to the vector two-point function, or from perturbation theory for vector bound-state eigenfunctions: the equivalence of the two methods is shown. Our procedures are then applied to flat and to AdS 5D Hard-Wall models; we complement results of existing literature evaluating the corrections to vector decay constant and to two-pion-one-vector couplings: this is particularly relevant to satisfy the sum rules. We concentrate our attention on the effects for the Gasser-Leutwyler coefficients; we show that, as in the Chiral Quark model, the addition of the gluonic condensate improves the consistency, the understanding and the agreement with phenomenology of the holographic model.Comment: 23 pages, three figures, sign error in pion wave function fixed, numerical analysis extended, general conclusions unchange

    Distinguishing among Technicolor/Warped Scenarios in Dileptons

    Get PDF
    Models of dynamical electroweak symmetry breaking usually include new spin-1 resonances, whose couplings and masses have to satisfy electroweak precision tests. We propose to use dilepton searches to probe the underlying structure responsible for satisfying these. Using the invariant mass spectrum and charge asymmetry, we can determine the number, parity, and isospin of these resonances. We pick three models of strong/warped symmetry breaking, and show that each model produces specific features that reflect this underlying structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc

    Mass-Matching in Higgsless

    Full text link
    Modern extra-dimensional Higgsless scenarios rely on a mass-matching between fermionic and bosonic KK resonances to evade constraints from precision electroweak measurements. After analyzing all of the Tevatron and LEP bounds on these so-called Cured Higgsless scenarios, we study their LHC signatures and explore how to identify the mass-matching mechanism, the key to their viability. We find singly and pair produced fermionic resonances show up as clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged bosonic resonances are visible in the dilepton and leptonic WZ channels, respectively. A measurement of the resonance masses from these channels shows the matching necessary to achieve S0S\simeq 0. Moreover, a large single production of KK-fermion resonances is a clear indication of compositeness of SM quarks. Discovery reach is below 10 fb1^{-1} of luminosity for resonances in the 700 GeV range.Comment: 28 pages, 18 figure

    Effective Action and Holography in 5D Gauge Theories

    Full text link
    We apply the holographic method to 5D gauge theories on the warped interval. Our treatment includes the scalars associated with the fifth gauge field component, which appear as 4D Goldstone bosons in the holographic effective action. Applications are considered to two classes of models in which these scalars play an important role. In the Composite-Higgs (and/or Gauge-Higgs Unification) scenario, the scalars are interpreted as the Higgs field and we use the holographic recipe to compute its one-loop potential. In AdS/QCD models, the scalars are identified with the mesons and we compute holographically the Chiral Perturbation Theory Lagrangian up to p^4 order. We also discuss, using the holographic perspective, the effect of including a Chern-Simons term in the 5D gauge Lagrangian. We show that it makes a Wess-Zumino-Witten term to appear in the holographic effective action. This is immediately applied to AdS/QCD, where a Chern-Simons term is needed in order to mimic the Adler-Bardeen chiral anomaly.Comment: 37 pages; v2, minor changes, one reference added; v3, minor corrections, version published in JHE

    Holographic Technidilaton and LHC searches

    Full text link
    We analyze in detail the phenomenology of a model of dynamical electroweak symmetry breaking inspired by walking technicolor, by using the techniques of the bottom-up approach to holography. The model admits a light composite scalar state, the dilaton, in the spectrum. We focus on regions of parameter space for which the mass of such dilaton is 125 GeV, and for which the bounds on the precision electroweak parameter S are satisfied. This requires that the next-to-lightest composite state is the techni-rho meson, with a mass larger than 2.3 TeV. We compute the couplings controlling the decay rates of the dilaton to two photons and to two (real or virtual) Z and W bosons. For generic choices of the parameters, we find a suppression of the decay into heavy gauge bosons, in respect to the analog decay of the standard-model Higgs. We find a dramatic effect on the decay into photons, which can be both strongly suppressed or strongly enhanced, the latter case corresponding to the large-N regime of the dual theory. There is a correlation between this decay rate of the dilaton into photons and the mass splitting between the techni-rho meson and its axial-vector partner: if the decay is enhanced in respect to the standard-model case, then the heavy spin-1 resonances are nearly degenerate in mass, otherwise their separation in mass is comparable to the mass scale itself.Comment: Very minor typos corrected. References adde

    Interpolating between low and high energy QCD via a 5D Yang-Mills model

    Full text link
    We describe the Goldstone bosons of massless QCD together with an infinite number of spin-1 mesons. The field content of the model is SU(Nf)xSU(Nf) Yang-Mills in a compact extra-dimension. Electroweak interactions reside on one brane. Breaking of chiral symmetry occurs due to the boundary conditions on the other brane, away from our world, and is therefore spontaneous. Our implementation of the holographic recipe maintains chiral symmetry explicit throughout. For intermediate energies, we extract resonance couplings. These satisfy sum rules due to the 5D nature of the model. These sum rules imply, when taking the high energy limit, that perturbative QCD constraints are satisfied. We also illustrate how the 5D model implies a definite prescription for handling infinite sums over 4D resonances. Taking the low energy limit, we recover the chiral expansion and the corresponding non-local order parameters. All local order parameters are introduced separately.Comment: Corresponds to published version, with some typos correcte

    Chiral Extrapolation of the Strangeness Changing K pi Form Factor

    Get PDF
    We perform a chiral extrapolation of lattice data on the scalar K pi form factor and the ratio of the kaon and pion decay constants within Chiral Perturbation Theory to two loops. We determine the value of the scalar form factor at zero momentum transfer, at the Callan-Treiman point and at its soft kaon analog as well as its slope. Results are in good agreement with their determination from experiment using the standard couplings of quarks to the W boson. The slope is however rather large. A study of the convergence of the chiral expansion is also performed.Comment: few minor change
    corecore