141 research outputs found

    Controlling orbital moment and spin orientation in CoO layers by strain

    Get PDF
    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3_{2,3} edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films

    Human papillomavirus 16 L2 inhibits the transcriptional activation function, but not the DNA replication function, of HPV-16 E2

    Get PDF
    In this study we analysed the outcome of the interaction between HPV-16 L2 and E2 on the transactivation and DNA replication functions of E2. When E2 was expressed on its own, it transactivated a number of E2-responsive promoters but co-expression of L2 led to the down-regulation of the transcription transactivation activity of the E2 protein. This repression is not mediated by an increased degradation of the E2 protein. In contrast, the expression of L2 had no effect on the ability of E2 to activate DNA replication in association with the viral replication factor E1. Deletion mutagenesis identified L2 domains responsible for binding to E2 (first 50 N-terminus amino acid residues) and down-regulating its transactivation function (residues 301–400). The results demonstrate that L2 selectively inhibits the transcriptional activation property of E2 and that there is a direct interaction between the two proteins, although this is not sufficient to mediate the transcriptional repression. The consequences of the L2–E2 interaction for the viral life cycle are discussed

    Charge injection instability in perfect insulators

    Full text link
    We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated with an instability of the insulating state or with bistability of the insulating and the charged state. The effect of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized charge cloud forms near the injecting defect (or contact). Charge injection stops when the field enhancement is screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mechanism and the final charged steady state are discussed for a simple model and for cylindrical and spherical geometries. The theory explains an experimentally observed increase of the critical electric field with decreasing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.Comment: Revtex, 7pages, 4 ps figure

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Giant positive magnetoresistance in metallic VOx thin films

    Full text link
    We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.Comment: 4 pages, 5 figures included in the text, references update

    Rifapentine Population Pharmacokinetics and Dosing Recommendations for Latent Tuberculosis Infection.

    Get PDF
    RATIONALE: Rifapentine has been investigated at various doses, frequencies, and dosing algorithms but clarity on the optimal dosing approach is lacking. OBJECTIVES: In this individual participant data meta-analysis of rifapentine pharmacokinetics, we characterize rifapentine population pharmacokinetics, including autoinduction, and determine optimal dosing strategies for short-course rifapentine-based regimens for latent tuberculosis infection. METHODS: Rifapentine pharmacokinetic studies were identified though a systematic review of literature. Individual plasma concentrations were pooled, and non-linear mixed effects modeling was performed. A subset of data was reserved for external validation. Simulations were performed under various dosing conditions including current weight-based methods and alternative methods driven by identified covariates. MEASUREMENTS AND MAIN RESULTS: We identified 9 clinical studies with a total of 863 participants with pharmacokinetic data (n=4301 plasma samples). Rifapentine population pharmacokinetics were described successfully with a one-compartment distribution model. Autoinduction of clearance was driven by rifapentine plasma concentration. The maximum effect was a 72% increase in clearance and was reached after 21 days. Drug bioavailability decreased by 27% with HIV infection, decreased by 28% with fasting, and increased by 49% with a high-fat meal. Body weight was not a clinically relevant predictor of clearance. Pharmacokinetic simulations showed that current weight-based dosing leads to lower exposures in low weight individuals, which can be overcome with flat dosing. In HIV-positive patients, 30% higher doses are required to match drug exposure in HIV-negative patients. CONCLUSIONS: Weight-based dosing of rifapentine should be removed from clinical guidelines and higher doses for HIV-positive patients should be considered to provide equivalent efficacy

    Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2

    Full text link
    The results of investigations of intercalated compounds Cr_xTiSe_2 and Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for x<0.25), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.
    • …
    corecore