126 research outputs found

    A War Poem

    Get PDF

    Another College Upheaval

    Get PDF
    In lieu of an abstract, below is the essay\u27s first paragraph. Still another raucous demonstration has rocked the academic world. At Woebegone U., activities were in more than their usual state of inertia yesterday, when certain vital facilities were seized and occupied by a howling mob. Striking at a strategic hour when the campus was empty of students- 8:30 in the morning-yelping faculty members took over the pool tables, the TV room, and the candy-bar machines. By the time the students were stirring for 12:30 classes, the insurrection was a fait accompli

    Play It Cool

    Get PDF
    In lieu of an abstract, below is the essay\u27s first paragraph. Man is born a poet, yet everywhere he is in chains

    A Test-Case on Continuation Methods for Bladed-Disk Vibration with Contact and Friction

    Get PDF
    Bladed-disks in turbo-machines experience harsh operating conditions and undergo high vibration amplitudes if not properly damped. Friction at the blade-to-blade or blade-to-disk interfaces plays a key role in dampening the high amplitudes. Due to the inherent complexity of these structures and non-linearities introduced by the friction joints, accurate response prediction becomes very difficult. There are variety of methods in the literature to predict non-linear vibration due to contact friction. However, their application to the bladed-disks remains limited. Furthermore, there are not many 3D realistic test-cases in the open literature for testing those methods and serve as a benchmark. A bladed-disk representative of a real turbine is presented as an open numerical test-case for the research community. It is characterized by a blade root joint and a shroud joint. The bladed-disk sector is meshed in different ways along with component mode synthesis (CMS) model order reduction for onward non-linear computations. The steady-state solution is obtained by multi-Harmonic Balance method and then continuation method is employed to predict the non-linear frequency response. Thus, it can serve as a case for testing previous and new methods as well as a benchmark for comparative studies

    Antibodies to Enteroviruses in Cerebrospinal Fluid of Patients with Acute Flaccid Myelitis.

    Get PDF
    Acute flaccid myelitis (AFM) has caused motor paralysis in >560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in >90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively).IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease

    The effect of radiation dose on mouse skeletal muscle remodeling

    Get PDF
    BackgroundThe purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling.Materials and methods.Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure.ResultsThe 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism.ConclusionsCollectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism
    corecore