274 research outputs found

    Revisiting the relationship between 6 {\mu}m and 2-10 keV continuum luminosities of AGN

    Get PDF
    We have determined the relation between the AGN luminosities at rest-frame 6 {\mu}m associated to the dusty torus emission and at 2-10 keV energies using a complete, X-ray flux limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 10^42 and 10^46 erg/s and redshifts from 0.05 to 2.8. The rest-frame 6 {\mu}m luminosities were computed using data from the Wide-Field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fit relationship for the full sample is consistent with being linear, L_6 {\mu}m \propto L_2-10 keV^0.99±\pm0.032, with intrinsic scatter, ~0.35 dex in log L_6 {\mu}m. The L_6 {\mu}m/L_2-10 keV luminosity ratio is largely independent on the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 {\mu}m and are overall ~1.3-2 times fainter at 6 {\mu}m than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 {\mu}m is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame 6 {\mu}m are subject to modest dust obscuration biases.Comment: Accepted for publication in MNRAS. 24 pages, 10 figures and 5 tables. This version includes minor changes to the text and Table 2 in response to comments from the refere

    Nano-alambres de dioxido de manganeso como material electroactivo en supercondensadores

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Nanomateriales cristalinos como electrodos en bacterías acuosas Li-ión

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    The nuclear and extended mid-infrared emission of Seyfert galaxies

    Full text link
    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL<40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ~400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ~30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650+-700 pc) than AGN-dominated systems (300+-100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a~0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ~70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV] lambda 25.89 micron emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ~400 pc of the galaxies, with some contribution from star formation.Comment: 27 pages, 12 figures, accepted by MNRA

    Selection of AGN candidates in the GOODS-South Field through SPITZER/MIPS 24 μm variability

    Get PDF
    We present a study of galaxies showing mid-infrared variability in data taken in the deepest Spitzer/MIPS 24 μm surveys in the Great Observatory Origins Deep Survey South field. We divide the data set in epochs and subepochs to study the long-term (months–years) and the short-term (days) variability. We use a χ2-statistics method to select active galactic nucleus (AGN) candidates with a probability ≤1 per cent that the observed variability is due to statistical errors alone. We find 39 (1.7 per cent of the parent sample) sources that show long-term variability and 55 (2.2 per cent of the parent sample) showing short-term variability. That is, 0.03 sources × arcmin−2 for both, long-term and short-term variable sources. After removing the expected number of false positives inherent to the method, the estimated percentages are 1.0 and 1.4 per cent of the parent sample for the long term and short term, respectively. We compare our candidates with AGN selected in the X-ray and radio bands, and AGN candidates selected by their IR emission. Approximately, 50 per cent of the MIPS (Multiband Imaging Photometer for Spitzer) 24 μm variable sources would be identified as AGN with these other methods. Therefore, MIPS 24 μm variability is a new method to identify AGN candidates, possibly dust obscured and low-luminosity AGN, that might be missed by other methods. However, the contribution of the MIPS 24 μm variable identified AGN to the general AGN population is small (≤13 per cent) in GOODS-South.JG-G, AA-H, and AH-C acknowledge support from the Augusto G. Linares research programme of the Universidad de Cantabria and from the Spanish Plan Nacional through grant AYA2012-31447. PGP-G acknowledges support from MINECO grant AYA2012-31277.Peer Reviewe

    SHARDS: Constraints on the dust attenuation law of star-forming galaxies at z~2

    Get PDF
    We make use of SHARDS, an ultra-deep (<26.5AB) galaxy survey that provides optical photo-spectra at resolution R~50, via medium band filters (FWHM~150A). This dataset is combined with ancillary optical and NIR fluxes to constrain the dust attenuation law in the rest-frame NUV region of star-forming galaxies within the redshift window 1.5<z<3. We focus on the NUV bump strength (B) and the total-to-selective extinction ratio (Rv), targeting a sample of 1,753 galaxies. By comparing the data with a set of population synthesis models coupled to a parametric dust attenuation law, we constrain Rv and B, as well as the colour excess, E(B-V). We find a correlation between Rv and B, that can be interpreted either as a result of the grain size distribution, or a variation of the dust geometry among galaxies. According to the former, small dust grains are associated with a stronger NUV bump. The latter would lead to a range of clumpiness in the distribution of dust within the interstellar medium of star-forming galaxies. The observed wide range of NUV bump strengths can lead to a systematic in the interpretation of the UV slope (β\beta) typically used to characterize the dust content. In this study we quantify these variations, concluding that the effects are Δβ\Delta\beta~0.4.Comment: 13 pages, 11+2 figures, 3 tables. MNRAS, in pres

    Morphological studies of the Spitzer Wide-Area Infrared Extragalactic survey galaxy population in the UGC 10214 Hubble space telescope/advanced camera for surveys field

    Get PDF
    We present the results of a morphological analysis of a small subset of the Spitzer Wide-Area Infrared Extragalactic survey (SWIRE) galaxy population. The analysis is based on public Advanced Camera for Surveys (ACS) data taken inside the SWIRE N1 field, which are the deepest optical high-resolution imaging available within the SWIRE fields as of today. Our reference sample includes 156 galaxies detected by both ACS and SWIRE. Among the various galaxy morphologies, we disentangle two main classes, spheroids (or bulge-dominated galaxies) and disc-dominated ones, for which we compute the number counts as a function of flux. We then limit our sample to objects with Infrared Array Camera (IRAC) fluxes brighter than 10 μJy, estimated ~90 per cent completeness limit of the SWIRE catalogues, and compare the observed counts to model predictions. We find that the observed counts of the spheroidal population agree with the expectations of a hierarchical model while a monolithic scenario predicts steeper counts. Both scenarios, however, underpredict the number of late-type galaxies. These observations show that the large majority (close to 80 per cent) of the 3.6- and 4.5-μm galaxy population, even at these moderately faint fluxes, is dominated by spiral and irregular galaxies or mergers
    corecore