4 research outputs found

    Proactive and reactive accumulation-to-bound processes compete during perceptual decisions

    Get PDF
    Standard models of perceptual decision-making postulate that a response is triggered in reaction to stimulus presentation when the accumulated stimulus evidence reaches a decision threshold. This framework excludes however the possibility that informed responses are generated proactively at a time independent of stimulus. Here, we find that, in a free reaction time auditory task in rats, reactive and proactive responses coexist, suggesting that choice selection and motor initiation, commonly viewed as serial processes, are decoupled in general. We capture this behavior by a novel model in which proactive and reactive responses are triggered whenever either of two competing processes, respectively Action Initiation or Evidence Accumulation, reaches a bound. In both types of response, the choice is ultimately informed by the Evidence Accumulation process. The Action Initiation process readily explains premature responses, contributes to urgency effects at long reaction times and mediates the slowing of the responses as animals get satiated and tired during sessions. Moreover, it successfully predicts reaction time distributions when the stimulus was either delayed, advanced or omitted. Overall, these results fundamentally extend standard models of evidence accumulation in decision making by showing that proactive and reactive processes compete for the generation of responses

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 1

    Get PDF

    Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory

    No full text
    Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue for alternative 'activity-silent' substrates. Using monkey and human electrophysiology data, we show here that attractor dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex (PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus information was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus representation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse transcranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating the causal role of prefrontal reactivations in determining working-memory behavior

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 1

    No full text
    corecore