1,153 research outputs found

    Transport in dimerized and frustrated spin systems

    Get PDF
    We analyze the Drude weight for both spin and thermal transport of one-dimensional spin-1/2 systems by means of exact diagonalization at finite temperatures. While the Drude weights are non-zero for finite systems, we find indications of a vanishing of the Drude weights in the thermodynamic limit for non-integrable models implying normal transport behavior.Comment: 2 pages, 1 figure. Proceedings of the ICM 2003, Rom

    Transport in quasi one-dimensional spin-1/2 systems

    Full text link
    We present numerical results for the spin and thermal conductivity of one-dimensional (1D) quantum spin systems. We contrast the properties of integrable models such as the spin-1/2 XXZ chain against nonintegrable ones such as frustrated and dimerized chains. The thermal conductivity of the XXZ chain is ballistic at finite temperatures, while in the nonintegrable models, this quantity is argued to vanish. For the case of frustrated and dimerized chains, we discuss the frequency dependence of the transport coefficients. Finally, we give an overview over related theoretical work on intrinsic and extrinsic scattering mechanisms of quasi-1D spin systems.Comment: 11 pages, 7 figure

    Comment on "Anomalous Thermal Conductivity of Frustrated Heisenberg Spin Chains and Ladders"

    Get PDF
    In a recent letter [Phys. Rev. Lett. 89, 156603 (2002); cond-mat/0201300], Alvarez and Gros have numerically analyzed the Drude weight for thermal transport in spin ladders and frustrated chains of up to 14 sites and have proposed that it remains finite in the thermodynamic limit. In this comment, we argue that this conclusion cannot be sustained if the finite-size analysis is taken to larger system sizes.Comment: One page REVTeX4, 1 figure. Published version (minor changes
    corecore