3,172 research outputs found
Effect of reactor irradiation on properties of a nongalling alloy
Effect of reactor irradiation on properties of nongalling alloy
Energy dependence of nucleus-nucleus potential close to the Coulomb barrier
The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are
extracted from the microscopic time-dependent Hartree-Fock theory for mass
symmetric reactions OO, CaCa,
CaCa and mass asymmetric reactions OCa,
CaCa, O+Pb, Ca+Zr. When the
center-of-mass energy is much higher than the Coulomb barrier energy,
potentials deduced with the microscopic theory identify with the frozen density
approximation. As the center-of-mass energy decreases and approaches the
Coulomb barrier, potentials become energy dependent. This dependence signs
dynamical reorganization of internal degrees of freedom and leads to a
reduction of the "apparent" barrier felt by the two nuclei during fusion of the
order of compared to the frozen density case. Several examples
illustrate that the potential landscape changes rapidly when the center-of-mass
energy is in the vicinity of the Coulomb barrier energy. The energy dependence
is expected to have a significant role on fusion around the Coulomb barrier.Comment: 11 pages, 13 figures, 1 table, discussion of effects of
coordinate-dependent mass added, accepted for publication in Phys. Rev.
Arithmetic Spacetime Geometry from String Theory
An arithmetic framework to string compactification is described. The approach
is exemplified by formulating a strategy that allows to construct geometric
compactifications from exactly solvable theories at . It is shown that the
conformal field theoretic characters can be derived from the geometry of
spacetime, and that the geometry is uniquely determined by the two-dimensional
field theory on the world sheet. The modular forms that appear in these
constructions admit complex multiplication, and allow an interpretation as
generalized McKay-Thompson series associated to the Mathieu and Conway groups.
This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page
Amplitude analysis of four-body decays using a massively-parallel fitting framework
The GooFit Framework is designed to perform maximum-likelihood fits for
arbitrary functions on various parallel back ends, for example a GPU. We
present an extension to GooFit which adds the functionality to perform
time-dependent amplitude analyses of pseudoscalar mesons decaying into four
pseudoscalar final states. Benchmarks of this functionality show a significant
performance increase when utilizing a GPU compared to a CPU. Furthermore, this
extension is employed to study the sensitivity on the mixing
parameters and in a time-dependent amplitude analysis of the decay . Studying a sample of 50 000 events and setting
the central values to the world average of and , the statistical sensitivities of and are determined
to be and .Comment: Proceedings of the 22nd International Conference on Computing in High
Energy and Nuclear Physics, CHEP 201
Observation of Three-dimensional Long-range Order in Smaller Ion Coulomb Crystals in an rf Trap
Three-dimensional long-range ordered structures in smaller and
near-spherically symmetric Coulomb crystals of ^{40}Ca^+ ions confined in a
linear rf Paul trap have been observed when the number of ions exceeds ~1000
ions. This result is unexpected from ground state molecular dynamics (MD)
simulations, but found to be in agreement with MD simulations of metastable ion
configurations. Previously, three-dimensional long-range ordered structures
have only been reported in Penning traps in systems of ~50,000 ions or more.Comment: 5 pages; 4 figures; to appear in Phys. Rev. Lett.; changed content
From finite nuclei to the nuclear liquid drop: leptodermous expansion based on the self-consistent mean-field theory
The parameters of the nuclear liquid drop model, such as the volume, surface,
symmetry, and curvature constants, as well as bulk radii, are extracted from
the non-relativistic and relativistic energy density functionals used in
microscopic calculations for finite nuclei. The microscopic liquid drop energy,
obtained self-consistently for a large sample of finite, spherical nuclei, has
been expanded in terms of powers of A^{-1/3} (or inverse nuclear radius) and
the isospin excess (or neutron-to-proton asymmetry). In order to perform a
reliable extrapolation in the inverse radius, the calculations have been
carried out for nuclei with huge numbers of nucleons, of the order of 10^6. The
Coulomb interaction has been ignored to be able to approach nuclei of arbitrary
sizes and to avoid radial instabilities characteristic of systems with very
large atomic numbers. The main contribution to the fluctuating part of the
binding energy has been removed using the Green's function method to calculate
the shell correction. The limitations of applying the leptodermous expansion to
actual nuclei are discussed. While the leading terms in the macroscopic energy
expansion can be extracted very precisely, the higher-order, isospin-dependent
terms are prone to large uncertainties due to finite-size effects.Comment: 13 pages revtex4, 7 eps figures, submitted to Phys. Rev.
A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole
Consider, in the domain of outer communication of a Kerr-Newman black hole, a
point (observation event) and a timelike curve (worldline of light source).
Assume that the worldline of the source (i) has no past end-point, (ii) does
not intersect the caustic of the past light-cone of the observation event, and
(iii) goes neither to the horizon nor to infinity in the past. We prove that
then for infinitely many positive integers k there is a past-pointing lightlike
geodesic of (Morse) index k from the observation event to the worldline of the
source, hence an observer at the observation event sees infinitely many images
of the source. Moreover, we demonstrate that all lightlike geodesics from an
event to a timelike curve in the domain of outer communication are confined to
a certain spherical shell. Our characterization of this spherical shell shows
that in the Kerr-Newman spacetime the occurrence of infinitely many images is
intimately related to the occurrence of centrifugal-plus-Coriolis force
reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy
- …