227 research outputs found

    Equilibrium and tearing stability of thin current layers in magnetic arcades

    Get PDF
    The MHD equilibrium of a thin, force-free current layer in a magnetic arcade is solved analytically. Various approximations are made in order to achieve a lowest order description that is physically relevant as well as mathematically tractable: The arcade is assumed to emanate from feet that are well localized, the current emanates from a localized sheet within the feet and is relatively weak. The resulting expressions for B (sup arrow) are relatively simple and natural flux coordinates are identifiable. The stability of such a current sheet to resistive filamentation is then investigated

    Magnetic field twist driven by remote convective motions: Characteristics and twist rates

    Get PDF
    It is generally believed that convective motions below the solar photosphere induce a twist in the coronal magnetic field as a result of frozen-in physics. A question of interest is how much twist can one expect from a persistent convective motion, given the fact that dissipative effects will eventually figure. This question is examined by considering a model problem: two conducting plates, with finite resistivity, are set in sheared motion and forced at constant relative speed. A resistive plasma is between the plates and an initially vertical magnetic field connects the plates. The time rate of tilt experienced by the field is obtained as a function of Hartmann number and the resistivity ratio. Both analytical and numerical approaches are considered

    Zona atypique chez un patient immunodéprimé

    Get PDF
    No Abstract

    Soliton self-modulation of the turbulence amplitude and plasma rotation

    Get PDF
    The space-uniform amplitude envelope of the Ion Temperature Gradient driven turbulence is unstable to small perturbations and evolves to nonuniform, soliton-like modulated profiles. The induced poloidal asymmetry of the transport fluxes can generate spontaneous poloidal spin-up of the tokamak plasma.Comment: Latex file, 66 pages, 24 postscript figures included. New section on rotation five new figures, comparison with magnetic pumping dampin

    MHD Wave Propagation in the Neighbourhood of Two Null Points

    Get PDF
    The nature of fast magnetoacoustic and Alfv\'en waves is investigated in a zero β\beta plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low β\beta solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.Comment: 11 pages, 14 figure
    • …
    corecore