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Abstract. The nature of fast magnetoacoustic and Alfvén waves is investigated in a zero β plasma in the neighbourhood of
a pair of two-dimensional null points. This gives an indication of wave propagation in the low β solar corona, for a more
complicated magnetic configuration than that looked at by McLaughlin & Hood (2004, A&A, 420, 1129). It is found that the
fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair. Here, the
wave splits and part of the wave accumulates at one null and the rest at the other. Current density will then accumulate at these
points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating
will occur in the corona. The Alfvén wave behaves in a different manner in that the wave accumulates along the separatrices.
Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the
phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying
the topology of the corona when considering MHD wave propagation.
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1. Introduction

The solar corona is dominated by the magnetic field. In order to
understand the myriad of phenomena that occur on the Sun, it
is important to understand the structure (topology) of the mag-
netic field itself. Potential field extrapolations of the coronal
magnetic field can be made from photospheric magnetograms.
Such extrapolations show the existence of an important feature
of the topology; null points. Null points are points in the field
where the Alfvén speed is zero. Detailed investigations of the
coronal magnetic field, using such potential field calculations,
can be found in Beveridge et al. (2002) and Brown & Priest
(2001).

Another key feature of the magnetic topology is the sep-
arator; a special field line that connects two null points. A
stable magnetic separator is the intersection of two separatrix
surfaces. These surfaces divide the magnetic field into regions
of different connectivity. A state is topologically stable if any
small perturbation in the parameters does not change the state
(Brown & Priest 1999). Separators have an important role in
magnetic reconnection (Priest & Titov 1996) and current sheets
can form along them (Longcope & Cowley 1996).

McLaughlin & Hood (2004) found that for a single 2D null
point, the fast magnetoacoustic wave was attracted to the null
and the wave energy accumulated there. In addition, they found
that the Alfvén wave energy accumulated along the separatrices
of the topology. The aim of this paper is to see if their ideas
carry through to magnetic configurations of more than one null
point. It can be argued that null points appear in pairs, (e.g.
by a local bifurcation) which makes it relevant to investigate

multiple null point topologies. A double null point may arise as
a bifurcation of a single 2D null point (Galsgaard et al. 1996;
Brown & Priest 1998).

Waves in the neighbourhood of a single 2D null point have
been investigated by various authors. Bulanov & Syrovatskii
(1980) provided a detailed discussion of the propagation of
fast and Alfvén waves using cylindrical symmetry. In their pa-
per, harmonic fast waves are generated and these propagate to-
wards the null point. However, the assumed cylindrical sym-
metry means that the disturbances can only propagate either
towards or away from the null point. Craig & Watson (1992)
mainly consider the radial propagation of the m = 0 mode
(where m is the azimuthal wavenumber) using a mixture of
analytical and numerical solutions. In their investigation, the
outer radial boundary is held fixed so that any outgoing waves
will be reflected back towards the null point. This means that
all the energy in the wave motions is contained within a fixed
region. They show that the propagation of the m = 0 wave to-
wards the null point generates an exponentially large increase
in the current density and that magnetic resistivity dissipates
this current in a time related to log η. Their initial disturbance
is given as a function of radius. In this paper, we are interested
in generating the disturbances at the boundary rather than inter-
nally. Craig & McClymont (1991, 1993) investigate the normal
mode solutions for both m = 0 and m � 0 modes with resis-
tivity included. Again they emphasise that the current builds
up as the inverse square of the radial distance from the null
point. However, attention was restricted to a circular reflecting
boundary.
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Multiple null point topologies have also been investigated
by various authors. Galsgaard et al. (1996) looked at the dy-
namic reconnection properties of a 3D double null. They inves-
tigated responses of the magnetic field to specific perturbations
on the boundaries of a 3D box; they tilted the spine axis to form
a pure m = 1 mode. They found that for a perturbation parallel
or orthogonal to the separator (between the two nulls), current
accumulation occured in the separator plane perpendicular to
the direction in which the spine was moved. For any other ori-
entation, the current was focussed along the separator line. In
the model, the boundary motions move the field lines but do
not return them to their original positions. Thus, the Poynting
flux induced by the imposed motion (and then fixing the field
after the motion is complete) accumulates at the resulting cur-
rent sheet and provides the energy released in the reconnec-
tion. However, if the boundary motions are simply due to the
passing of incoming waves through the boundary, then it is not
clear that the current sheet will form. If this is the case, will
the energy in the wave, again due to the Poynting flux through
the boundary, dissipate or simply pass through one of the other
boundaries?

Galsgaard & Nordlund (1997) found that when magnetic
structures containing many null points are perturbed, current
accumulates along separator lines. The perturbations used were
random shear motions on two opposite boundaries. Again,
the field lines were not returned to their original position.
Galsgaard et al. (1997a) looked at shearing a 3D potential null
point pair, with continuous (opposite) shear on two opposite
boundaries (parallel to the separator). This generated a wave
pulse that travelled towards the interior of the domain from
both directions, and resulted in current accumulation along the
separator line with maximum value at the null points. From
these experiments (which share a lot with Galsgaard et al.
1996) it was concluded that to drive current along the full
length of the separator line, the perturbation wavelength had
to be longer than the length of the separator line. Galsgaard
et al. (1997b) looked at perturbations in 3D magnetic configu-
rations containing a double null point pair connected by a sep-
arator. The boundary motions used were very similar to those
described above (i.e. shear the boundary and fix). Their ex-
periments showed that the nulls can either accumulate current
individually or act together to produce a singular current col-
lapse along the separator. However, in all these previous works
the boundary conditions used have tried to mimic the effect
of photspheric footpoint motions by moving the boundary and
holding it fixed. This paper will look at the 2D null point pair
and investigate the propagation and transient behaviour of an
individual wave pulse entering the magnetic structure.

The propagation of fast magnetoacoustic waves in an
inhomogeneous coronal plasma has been investigated by
Nakariakov & Roberts (1995), who showed how the waves are
refracted into regions of low Alfvén speed. In the case of null
points, it is the aim of this paper to see how this refraction pro-
ceeds when the Alfvén speed actually drops to zero.

The paper has the following outline. In Sect. 2, the basic
equations are described. The results for an uncoupled fast mag-
netoacoustic wave are presented in Sect. 3. This section dis-
cusses fast wave propagation with a pulse coming in from the

Fig. 1. Magnetic field configuration containing two nulls joined by a
separator.

top and side boundaries, and numerical and anaytical results
are presented. Section 4 discusses the propagation of Alfvén
waves and the conclusions are given in Sect. 5

2. Basic equations

The usual MHD equations for an ideal, zero β plasma appro-
priate to the solar corona are used. Hence,

ρ

(
∂u

∂t
+ (u · ∇) u

)
=

1
µ

(∇ × B) × B , (1)

∂B
∂t
= ∇ × (u × B) , (2)

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

where ρ is the mass density, u is the plasma velocity, B the
magnetic induction (usually called the magnetic field), µ =
4π×10−7 Hm−1 the magnetic permeability, and σ the electrical
conductivity. The gas pressure and the adiabatic energy equa-
tion are neglected in the zero β approximation. The magnetic
diffusivity is neglected in the ideal approximation.

2.1. Basic equilibrium

The basic magnetic structure is taken as a simple 2D two null
points configuration. There are two such configurations to con-
sider; one containing a separator and one that does not. The aim
of studying waves in a 2D configuration is one of simplicity;
the individual effects are much easier to identify when there is
no coupling between the fast and Alfvén modes. The magnetic
field with a separator is taken as:

B0 =
B0

a2

(
x2 − z2 − a2, 0,−2xz

)
, (4)

where B0 is a characteristic field strength and a is the length
scale for magnetic field variations. This configuration can be
seen in Fig. 1. The other magnetic configuration considered
takes the form:

B0 =
B0

a2

(
2xz, 0, x2 − z2 − a2

)
, (5)
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Fig. 2. Magnetic field configuration containing two nulls not joined by
a separator.

and can be seen in Fig. 2. Obviously, these magnetic configu-
rations are no longer valid far away from the null points, as the
field strength tends to infinity.

As in McLaughlin & Hood (2004), the linearised
MHD equations are used to study the nature of wave propa-
gation near the two null points. Using subscripts of 0 for equi-
librium quantities and 1 for perturbed quantities, the linearised
equation of motion becomes

ρ0
∂u1
∂t
=

(∇ × B1

µ

)
× B0, (6)

the linearised induction equation

∂B1

∂t
= ∇ × (u1 × B0), (7)

and the linearised equation of mass continuity

∂ρ1

∂t
+ ∇ · (ρ0u1) = 0. (8)

We will not discuss Eq. (8) further as it can be solved once we
know u1. In fact, it has no influence on the momentum equation
(in the zero β approximation) and so in effect the plasma is
arbitrarily compressible (Craig & Watson 1992). We assume
the background gas density is uniform and label it as ρ 0. A
spatial variation in ρ0 can cause phase mixing (Heyvaerts &
Priest 1983).

We now consider a change of scale to non-dimensionalise;
let v1 = v̄u∗1, B0 = B0B∗0, B1 = B0B∗1, x = ax∗, z = az∗,
∇ = 1

a∇∗ and t = t̄t∗, where we let * denote a dimensionless
quantity and v̄, B0, a and t̄ are constants with the dimensions of
the variable they are scaling. We then set B0√

µρ0
= v̄ and v̄ = a/t̄

(this sets v̄ as a sort of constant background Alfvén speed). This
process non-dimensionalises Eqs. (6) and (7), and under these
scalings, t∗ = 1 (for example) refers to t = t̄ = a/v̄; i.e. the time
taken to travel a distance a at the background Alfvén speed. For
the rest of this paper, we drop the star indices; the fact that they
are now non-dimensionalised is understood.

The ideal linearised MHD equations naturally decouple
into two equations for the fast MHD wave and the Alfvén wave.

The slow MHD wave is absent in this limit and there is no ve-
locity component along the background magnetic field (as can
be seen by taking the scalar product of Eq. (6) with B 0).

The linearised equations for the fast magnetoacoustic
wave are:

∂V
∂t
= v2A (x, z)

(
∂bz

∂x
− ∂bx

∂z

)

∂bx

∂t
= −∂V

∂z
,
∂bz

∂t
=
∂V
∂x
, (9)

where the Alfvén speed, vA (x, z), is equal to
√

B2
x + B2

z =[(
x2 + z2

)2 − 2
(
x2 − z2

)
+ 1

] 1
2

, B1 = (bx, 0, bz) and the vari-

able V is related to the perpendicular velocity; V =[
(u1 × B0) · êy

]
. These equations can be combined to form a

single wave equation:

∂2V
∂t2
= v2A (x, z)

(
∂2V
∂x2
+
∂2V
∂z2

)
· (10)

The linearised equations for the Alfvén wave, with u1 =(
0, vy, 0

)
and B1 =

(
0, by, 0

)
are:

∂vy

∂t
= Bx

∂by
∂x
+ Bz
∂by
∂z
,
∂by
∂t
= Bx

∂vy

∂x
+ Bz
∂vy

∂z
, (11)

which can be combined to form a single wave equation:

∂2vy

∂t2
=

(
Bx
∂

∂x
+ Bz

∂

∂z

)2

vy. (12)

It is worth noting that the zero β approximation will be invalid
near the null points, where the pressure terms become impor-
tant. In fact, a finite β model would introduce slow waves,
which would be driven by the excited fast waves. Also, the
model is linear but the inhomogenity of the medium would lead
to nonlinear coupling of the modes (Nakariakov et al. 1997).

3. Fast wave

We consider the effect of sending a fast magnetoacoustic wave
into these two magnetic configurations from the top and side
boundaries. Unlike McLaughlin & Hood (2004), we also con-
sider the effect of sending in a wave pulse from a side boundary
because the magnetic configuration is not symmetric. In fact,
since the fast magnetoacoustic wave can cross fieldlines, it be-
haves identically across both magnetic configurations (Figs. 1
and 2) and so we only have two cases to investigate, i.e. Eq. (10)
is true for both magnetic configurations (unlike (12), which de-
pends upon the form of B).

3.1. Upper boundary

We solve the linearised MHD Eqs. (9) for the fast wave numer-
ically using a two-step Lax-Wendroff scheme. The numerical
scheme is run in a box with −3 ≤ x ≤ 3 and −4 ≤ z ≤ 2, with
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our attention focused on −2 ≤ x ≤ 2 and −2 ≤ z ≤ 2. For a sin-
gle wave pulse coming in from the top boundary, the boundary
conditions are taken as:

V(x, 2) =

{
sinωt for 0 ≤ t ≤ π

ω

0 otherwise,

∂V
∂x

∣∣∣∣∣
x=−3
= 0 ,

∂V
∂x

∣∣∣∣∣
x=3
= 0 ,

∂V
∂z

∣∣∣∣∣
z=−4
= 0.

Tests show that the central behaviour is largely unaffected by
these choices of side and bottom boundary conditions. The
other boundary conditions on the perturbed magnetic field fol-
low from the remaining equations and the solenodial condition,
∇ · B1 = 0.

We find that the linear, fast magnetoacoustic wave travels
towards the neighbourhood of the two null points and begins to
wrap around them. Since the Alfvén speed, vA (x, z), is spatially
varying, different parts of the wave travel at different speeds,
and it travels faster the further it is away from the null points
(vA (x, z) = 0 at the null points). This is a similar effect to that
described it the case of a single null point in McLaughlin &
Hood (2004). However, in this case there is a non-zero Alfvén
speed between the two null points, i.e. for −1 < x < 1, z = 0.
The fast wave slows down greatly when it approaches this area,
but manages to cross this line (the separator if we were consid-
ering a setup such as that of Fig. 1). Hence the wave bends be-
tween the two null points and passes through the area between
them. This part of the wave is then again suceptible to the re-
fraction effect, and so continues to wrap around the null points,
breaking into two waves along the line x = 0 (due to symme-
try). Each part of the wave then continues to wrap around its
closest null point, repeatedly, eventually accumulating at the
null points (x = −1 and x = +1, along z = 0). This can be seen
in the shaded contours of Fig. 3.

3.2. Analytical results

We can approximately solve Eq. (10) for the fast wave to
gain more insight into the numerical simulations. Substituting
V = eiφ(x,z) · e−iωt into (10) and assuming that ω � 1
(WKB approximation), leads to a first order PDE of the form
F

(
x, z, φ, ∂φ∂x ,

∂φ
∂z

)
= 0. Applying the method of characteristics,

we generate the equations:

dφ
ds
= −ω2

dp
ds
= 2x

(
x2 + z2 − 1

) (
p2 + q2

)
dq
ds
= 2z

(
x2 + z2 + 1

) (
p2 + q2

)
dx
ds
= −p

[(
x2 + z2

)2 − 2(x2 − z2) + 1
]

dz
ds
= −q

[(
x2 + z2

)2 − 2(x2 − z2) + 1
]

where p = ∂φ
∂x , q = ∂φ

∂z , ω is the frequency of our wave and s is
some parameter along the characteristic.

These five ODEs were solved numerically using a fourth-
order Runge-Kutta method. Contours of constant φ can be

thought of as defining the positions of the edges of the wave
pulse, i.e. with correct choices of s, the WKB solution repre-
sents the front, middle and back edges of the wave. s is com-
parable to t and so the numerical and analytical work can be
directly compared. The agreement between the analytic model
and the leading edge of the wavefront is very good, as seen in
an overplot of a numerical simulation (shaded area) and our
WKB solution (thick lines) in Fig. 3.

We can also use our WKB solution to plot the particle paths
of individual elements from the initial wave. In Fig. 4, we see
the spiral evolution of elements that begin at points x = −2,
−1.5, −1, 0, 0.3 0.5 along z = 2. Note that an element that
begins at x = 0, z = 2 is not affected by the null points and
passes between the two and off to −∞. In effect, the two null
points cancel out each other’s effect at this point, although any
perturbation to an element travelling along this path would send
the element spiralling towards one of the nulls. The behaviour
of such a particle can be shown:

vA(0, z) =
√

B2
x + B2

z

∣∣∣∣∣
x=0
= −(z2 + 1) =

∂z
∂t
·

Hence, solving for z, we find z = tan (A − t), where A =
arctan z0 and z0 is some starting position (which is z0 = 2 in
our simulations).

3.3. Side boundary

We also investigated the effect of solving the linearised
MHD equations for a fast wave coming in from the side bound-
ary, along x = −2. Again a two-step Lax-Wendroff numerical
scheme was run in a box with −2 ≤ x ≤ 4 and −3 ≤ z ≤ 3, with
our attention again focused on −2 ≤ x ≤ 2 and −2 ≤ z ≤ 2.
For a single wave pulse from the side boundary, the boundary
conditions were:

V(−2, z) =

{
sinωt for 0 ≤ t ≤ π

ω

0 otherwise
,

∂V
∂x

∣∣∣∣∣
x=4
= 0 ,

∂V
∂z

∣∣∣∣∣
z=−3
= 0 ,

∂V
∂z

∣∣∣∣∣
z=3
= 0.

Again, tests show that the central behaviour is largely unaf-
fected by these choices of the remaining boundary conditions.

We find that the linear, fast wave travels in from the left
hand side of the box and begins to feel the effect of the left hand
side null point (at x = −1, z = 0). The wave thins and begins
to wrap around this null point. As the ends of the wave wrap
around behind the left null point, they then become influenced
by the second, right hand side null point (at x = +1, z = 0).
These arms of the wave then proceed to wrap around the right
null point, flattening the wave. Furthermore, the two parts of the
wave now travelling through the area between the null points
have non-zero Alfvén speed, and so pop through (the wave in
the lower half plan now travels up, crossing the line −1 < x < 1
and z = 0, and visa versa for the wave in the upper half plan).
These parts of the wave break along x = 0 and then proceed
to wrap around the null point closest to them. Eventually, the
wave accumulates at both null points. This can be seen in the
shaded contours of Fig. 5.
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Fig. 3. Comparison of numerical simulation (shaded area) and analytical solution V for a fast wave sent in from upper boundary for −3 ≤ x ≤ 3,
and its resultant propagation at times a) t = 0.25, b) t = 0.5, c) t = 0.75, d) t = 1.0, e) t = 1.5 and f) t = 1.75, g) t = 2.0, h) t = 2.25,
i) t = 2.5, j) t = 3.0, k) t = 3.5 and l) t = 3.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of
the WKB wave solution, where the pulse enters from the top of the box.

3.4. Analytical results

As before, Eqs. (13) were solved numerically using a fourth-
order Runge-Kutta method, but this time using different initial
conditions. The thick black lines in Fig. 5 shows constant φ at
different values of the parameter s. Constant φ can be thought
of as defining the position of the edge of the wave pulse, i.e.
with correct choices of s, the WKB solution represents the
front, middle and back edges of the wave. As before, the agree-
ment between the analytic model and the wavefront is very
good and can be seen in an overplot of a numerical simulation
and our WKB solution in Fig. 5.

We can also use our WKB solution to plot the particle paths
of individual elements from the initial wave. In Fig. 6, we see
the spiral evolution of elements that begin at points z = −2, 0,
0.5, 1.0, 1.5 and 1.86 along x = −2. Note that for a wavefront
extending between −2 ≤ z ≤ +2, there is a critical distance
where some elements of the wave are sucked into the nearest
(left hand) null point, and others spiral round it at such a great
distance that they feel the influence of the second (right hand)
null point and begin spiralling towards it (x = +1, z = 0). Note
that for a starting position of z =

√
3, the wave element orbits

in a circle (radius
√

3). This is the critical starting distance; a
starting distance, say z0, less than this will sprial into the left
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Fig. 4. Plots of WKB solution for a fast wave sent in from the upper
boundary and its resultant particle paths for starting points of x = −2,
−1, 0, 0.3 and 0.5 along z = 2.

hand null point, whereas the wave particle will spiral into the
right hand null point if z0 >

√
3. This can be seen in Fig. 6.

Simulations show that this critical distance is
√

L2 − 1, where L
is the distance between the origin and the side boundary (here
L = |x0| = 2). When x0 = −2 and z0 =

√
3 (i.e. critical starting

distance), the equations are satisfied by:

x =
−1(

2 +
√

3 sin θ
) , p = − π√

3
cos θ,

z =

√
3 cos θ(

2 +
√

3 sin θ
) , q = π +

2π√
3

sin θ,

where θ = 4πs − π/3, and confirm the periodic circular orbit.

4. Alfvén wave

The equations describing the behaviour of the Alfvén Wave,
Eqs. (11), were solved numerically using a two-step Lax-
Wendroff scheme. McLaughlin & Hood (2004) showed that
in the neighbourhood of a two-dimensional X-point, the linear
Alfvén wave spreads out along the field lines, eventually accu-
mulating along the separatrices. Hence, for our two null points,
we have four cases to consider; an Alfvén wave pulse coming
in from the top boundary and coming in from the side boundary
for both magnetic configurations shown in Figs. 1 and 2.

4.1. Two null points connected by a separator

We consider the two null point magnetic configuration contain-
ing a separator, as shown in Fig. 1.

4.1.1. Top boundary

We initially consider a box (−2 ≤ x ≤ 2, −2 ≤ z ≤ 2) with
a single wave pulse coming in across part of the top boundary
(1 ≤ x ≤ 2, z = 2). We choose such a pulse because, as initial
experiments showed, the Alfvén wave spreads out along the
field lines as it propagates and we found that this choice of
boundary condition illustrated this effect much clearer. In fact,

the wave crosses the separator (z = 0) and so the final, high
resolution run was performed in a box (−2.5 ≤ x ≤ 2.5, −0.5 ≤
z ≤ 2). The full boundary conditions were:

vy(x, 2) = 2 (sinωt) (sinπx/2) for

{
1 ≤ x ≤ 2
0 ≤ t ≤ π

ω
∂vy
∂z

∣∣∣∣
z=2
= 0 otherwise,

∂vy

∂x

∣∣∣∣∣∣
x=2.5

= 0 ,
∂vy

∂x

∣∣∣∣∣∣
x=−2.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=−0.5

= 0.

Tests show that the central behaviour is unaffected by these
choices. The other boundary conditions follow from the re-
maining equations and the solenodial condition, ∇ · B 1 = 0.

We found that the linear Alfvén wave travels down from
the top boundary and begins to spread out, following the field
lines. As the wave approaches the separator along z = 0 and the
separatrix that passes through x = −1, the wave thins but keeps
its original amplitude. The wave eventually accumulates very
near the separator and separatrix. This can be seen in Fig. 7.

4.1.2. Analytical results

As in all four cases, the Alfvén equations we have to solve are:

∂2vy

∂t2
=

(
Bx
∂

∂x
+ Bz

∂

∂z

)2

vy. (13)

In this experiment, Bx = x2 − z2 − 1, Bz = −2xz and we can
apply the WKB approximation. As in Sect. 3.2, substituting
vy = eiφ(x,z) · e−iωt into Eq. (13) and assuming that ω � 1, leads
to a first order PDE of the formF

(
x, z, φ, ∂φ∂x ,

∂φ
∂z

)
= 0. Applying

the method of characteristics, we generate the equations:

dφ
ds
= −ω2

dp
ds
= (2zq − 2xp) ξ

dq
ds
= (2zp + 2xq) ξ

dx
ds
=

(
x2 − z2 − 1

)
ξ

dz
ds
= (−2xz) ξ (14)

where ξ =
[(

x2 − z2 − 1
)

p − 2xzq
]
, p = ∂φ

∂x , q = ∂φ
∂z , ω is the

frequency of our wave and s is some parameter along the char-
acteristic.

These five ODEs were solved numerically using a fourth-
order Runge-Kutta method. Constant φ can be thought of as
defining the position of the edge of the wave pulse, so with
correct choices of s the solution can be directly compared to our
numerical solution (seen in Fig. 7 as the dark overplot lines).
Figures 7, 9, 10 and 11 all show comparisons of the numerical
simulation and corresponding WKB solutions. In each case, the
agreement between the analytic model and numerical results is
very good.

We can also use our WKB solution to plot the particle paths
of individual elements from the initial wave. In Fig. 8, start-
ing points of x = 1, 1.25, 1.5,

√
7/3 (separatrix) and 1.75 are

plotted.
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Fig. 5. Comparison of numerical simulation and analytical solution of V for a fast wave sent in from left hand boundary for −3 ≤ x ≤ 3, and
its resultant propagation at times a) t = 0.25, b) t = 0.5, c) t = 0.75, d) t = 1.0, e) t = 1.5 and f) t = 1.75, g) t = 2.0, h) t = 2.25, i) t = 2.5,
j) t = 3.0, k) t = 3.5 and l) t = 3.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of the wave,
where the pulse enters from the side of the box.

4.1.3. Side boundary

We now consider a box (−2 ≤ x ≤ 2, −2 ≤ z ≤ 2) with a single
wave pulse coming in across part of the side boundary (x = −2,
−1 ≤ z ≤ 1). In fact, the wave never passes the (left) separatrix
and so the final, high resolution run was performed in a box
(−2 ≤ x ≤ 0.5, −2.5 ≤ z ≤ 2.5). The full boundary conditions
were:

vy(−2, z) =


2 (sinωt)

[
sin π(1+z)

2

]
for

{−1 ≤ z ≤ 1
0 ≤ t ≤ π

ω

0 otherwise,

∂vy

∂x

∣∣∣∣∣∣
x=0.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=−2.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=2.5

= 0.

Tests show that the central behaviour is unaffected by these
choices. The other boundary conditions follow from the re-
maining equations and the solenodial condition, ∇ · B 1 = 0.

We found that the linear Alfvén wave travels in from the
side boundary and begins to spread out, following the field
lines. As the wave approaches the (left) separatix (that passes
through x = −1), the wave thins (but keeps its original ampli-
tude). The wave eventually accumulates very near this separa-
trix. This can be seen in Fig. 9.
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Fig. 6. Plots of WKB solution for a fast wave sent in from the side boundary and its resultant particle paths. Top left displays starting points of
z = −2, 0, 0.5 and +1 along x = −2. Bottom left displays a starting point of z = +1.5. The top right subfigure shows a starting point of z = 1.86,
the lower right shows z =

√
3. Note the change of scale in the two right hand subfigures.

Fig. 7. Comparison of numerical simulation (shaded wave) and analytical (WKB) solution at times a) t = 0.25, b) t = 0.75, c) t = 1.25,
d) t = 1.75, e) t = 2.25 and f) t = 2.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of the
WKB wave solution, where the pulse enters from the top of the box.

4.1.4. Analytical results

By solving the same characteristic equations, Eqs. (14), but
with different choices of initial condition (i.e. modelling the
wave coming in from the side), we can obtain an analyti-
cal result to match our numerical simulation. Again, we use
a fourth-order Runge-Kutta method. The comparison of the

numerical simulation and our WKB solution can be seen in
Fig. 9.

4.2. Two null points not connected by a separator

We now consider the two null point magnetic configuration that
does not contain a separator, as shown in Fig. 2.
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4.2.1. Top boundary

We consider a box (−2 ≤ x ≤ 2, −2 ≤ z ≤ 2) with a single wave
pulse coming in across part of the top boundary (−1 ≤ x ≤ 1,
z = 2), i.e. crossing the separatrices. The final, high resolution
run was performed in a box (−2.5 ≤ x ≤ 2.5, −3 ≤ z ≤ 2). The
full boundary conditions were:

vy(x, 2) =


2 (sinωt)

[
sin π(1+x)

2

]
for

{−1 ≤ x ≤ 1
0 ≤ t ≤ πω

0 otherwise,

∂vy

∂x

∣∣∣∣∣∣
x=2.5

= 0 ,
∂vy

∂x

∣∣∣∣∣∣
x=−2.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=−3

= 0.

The other boundary conditions are chosen in the same way as
before.

We found that the linear Alfvén wave travels down from
the top boundary and begins to spread out, following the field
lines. The wave thins as it descends, but keeps its original am-
plitude. The wave takes the shape of the separatrices that pass
through x = ±2, z = +

√
2/3. The wave accumulates along

these separatrices for z > 0. The rest of the wave (the part
between −1 < x < +1) continues descending and eventually
accumulates along the separatrices in the lower half of the box.
This can be seen in Fig. 10. The part of wave in the small re-
gion about x = 0 descends indefinitely, since the separatrices
converge along x = 0 at infinity. This can be shown:

∂2vy

∂t2
=

(
Bx
∂

∂x
+ Bz

∂

∂z

)2

vy =

(
Bz
∂

∂z

)2

vy|x=0.

Let ∂
∂s =

(
Bz
∂
∂z

)
and comparing the original equation with ∂vy

∂s =

∂x
∂s
∂vy
∂x +

∂z
∂s
∂vy
∂z leads to:

z = tan (A − t)|x=0,

where A = arctan z0 and z0 is the starting postion of our char-
acteristic. Thus z starts at x = 0, z = 2 and descends, following
the line x = 0 but becoming closer to zero. The particle passes
through z = 0 at t = arctan 2 and becomes more and more
negative (i.e. continues to descend) thereafter.

4.2.2. Analytical results

Again, we have to solve Eqs. (13) to gain an analytical solution
for our Alfvén wave. Here, Bx = 2xz and Bz = x2 − z2 − 1. We
substitute vy = eiφ(x,z) · e−iωt into (13) and assume that ω � 1
(WKB approximation). This leads to a first order PDE of the
form F

(
x, z, φ, ∂φ

∂x ,
∂φ
∂z

)
= 0. Applying the method of character-

istics to this magnetic setup, we generate the equations:

dφ
ds
= −ω2

dp
ds
= − (2zp + 2xq) ζ

dq
ds
= − (2xp − 2zq) ζ

dx
ds
= (2xz) ζ

dz
ds
=

(
x2 − z2 − 1

)
ζ (15)

Fig. 8. Plots of WKB solution for an Alfvén wave sent in from the
upper boundary and its resultant particle paths (thick lines). Starting
points of x = 1, 1.25, 1.5,

√
7/3 and 1.75 are plotted.

where ζ =
[
2xzp +

(
x2 − z2 − 1

)
q
]
, p = ∂φ

∂x , q = ∂φ
∂z , ω is

the frequency of our wave and s is some parameter along the
characteristic.

These are solved using a fourth-order Runge-Kutta method
and the results can be seen in Fig. 10.

4.2.3. Side boundary

We now consider a box (−2 ≤ x ≤ 2, −2 ≤ z ≤ 2) with a
single wave pulse coming in across the side boundary (x = −2,
0 ≤ z ≤ 1). The final, high resolution run was performed in
a box (−2 ≤ x ≤ 0.5, −2.5 ≤ z ≤ 2.5). The full boundary
conditions were:

vy(−2, z) =


2 sinωt sin π(z+1)

2 for

{−1 ≤ z ≤ 1
0 ≤ t ≤ π

ω

0 otherwise,

∂vy

∂x

∣∣∣∣∣∣
x=0.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=−2.5

= 0 ,
∂vy

∂z

∣∣∣∣∣∣
z=2.5

= 0.

We found that the linear Alfvén wave travels in from the side
boundary and begins to spread out, following the field lines. As
the wave approaches the separatix (that passes through x = −1,
z =

√
2/3), the wave thins (but keeps its original amplitude).

The wave eventually accumulates very near this separatrix.
This can be seen in Fig. 11.

4.2.4. Analytical results

We use the same characteristic equations, (Eqs. (15)), with
different choices of initial condition (i.e. modelling the wave
from the side boundary this time) to obtain an analytical result
to compare our numerical simulation. The results can be seen
in Fig. 11.

5. Conclusions

This paper describes an investigation into the nature of
MHD waves in the neighbourhood of two null points. From
the work explained above, it has been seen that when a fast
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Fig. 9. Comparison of numerical simulation (shaded) and analytical solution at times a) t = 0.14, b) t = 0.25, c) t = 0.5, d) t = 0.75, e) t = 1.25
and f) t = 1.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of the wave, where the pulse enters
from the side of the box.

Fig. 10. Comparison of numerical simulation (shaded area) and analytical solution at times a) t = 0.25, b) t = 0.75, c) t = 1.25, d) t = 1.75,
e) t = 2.25 and f) t = 2.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of the wave, where the
pulse enters from the top of the box.

magnetoacoustic wave propagates near the two null point con-
figuration, the wave bends due to refraction and begins to wrap
itself around the null points. The wave “breaks” and part of it
travels (and wraps) around one of the null points and the rest
wraps around the other null point. In the case of the fast wave

approaching the two null points from above, the wave travels
down towards the null points and begins to wrap around them.
In addition, since the Alfvén speed is non-zero between the null
points, the wave can travel through this area (into the lower half
plane). This part of the wave is also affected by the refraction
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Fig. 11. Comparison of numerical simulation (shaded area) and analytical solution at times a) t = 0.14, b) t = 0.39, c) t = 0.75, d) t = 1.0,
e) t = 1.25 and f) t = 1.75, labelling from top left to bottom right. The lines represent the front, middle and back edges of the wave, where the
pulse enters from the side of the box.

effect and the wave continues to wrap around its closest null
point. The wave breaks into two along the line x = 0 (due to
symmetry), with each half of the wave going to its closest null
point. Each part of the wave then continues to wrap around
its respective null point repeatedly, eventually accumulating at
that point. In the case of the fast wave pulse travelling in from
the side boundary, we see a similar effect (i.e. a refraction ef-
fect, wave breakage and accumulation at the nulls), but in this
case the wave is not equally shared between the null points.
For a fast wave travelling in from the left boundary, initially
the pulse thins and begins to feel the effect of the left hand-
side null point. The wave begins to wrap around this null point
(due to refraction). As the ends of the wave wrap around be-
hind the left null point, they then become influenced by the
second, right hand side null point. These arms of the wave
then proceed to wrap around the right null point, flattening the
wave. Furthermore, the two parts of the wave now travelling
through the area between the null points have non-zero Alfvén
speed, and so pop through. These parts of the wave break along
x = 0 and then proceed to wrap around the null point closest to
them.

So it is clear the refraction effect focusses all the energy of
the incident wave towards the null points. The physical signif-
icance of this is that any fast magnetoacoustic disturbance in
the neighbourhood of a null point pair will be drawn towards
the regions of zero magnetic field strength and focus all of its
energy at that point.

From this work, it has been seen that when a linear, fast
magnetoacoustic wave propagates near a two null point con-
figuration, the wave bends due to refraction and begins to
wrap itself around the null points (at least in two dimensions).
The angle that the fast wave approaches the null points from
will determine what proportion of wave ends up at each null
point (when the wave “breaks”). Furthermore, since we have
a changing perturbed magnetic field with increasing gradients,
we will have a build up of current density. In the case of the
fast wave, all the wave is accumulating at the null points. This
means that the perturbed magnetic field (B1) will have large
gradients at those points and that is where current will accu-
mulate. This is in good agreeement with similar phenomena
noted in McLaughlin & Hood (2004). With a large current
accumulation at the nulls, this is where energy will be dis-
sipated. Therefore, wave heating will naturally occur at these
null points. Further experiments are being carried out to con-
firm this.

In the cases of the Alfvén wave, the results show that the
wave propagates along the field lines, thins but keeps its origi-
nal amplitude, and eventually accumulates very near to the sep-
aratrices. This is again in agreement with work carried out for
a single null by McLaughlin & Hood (2004). As hypothesised
above, since we have wave accumulation along the separatri-
ces, the gradients of the perturbed magnetic field ( j x and jz
in this case) will build up along these as well. Hence we will
have current build up along the separatrices. Therefore, if all
the current is accumulating along the separatrices, then this is
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where dissipation will naturally occur. Our early experiments
into current accumulation for two null points confirm this.
In view of the fact that the waves eventually dissipate due to
resistive damping (for example), it would be useful to have an
estimate of the nature of the wave damping. Dissipation en-
ters our model through the addition of a η∇ 2B1 term to Eq. (7)
and the WKB model can be extended to include the effects of
resistivity. For the model describing the Alfvén wave pulse en-
tering the top boundary (Sect. 4.1.1), it was found that along
the separatrices the diffusion term become important in a time
that depends on log η (see Appendix); as found by Craig &
McClymont (1991, 1993) and Hassam (1992). This means that
the linear wave dissipation will be very efficient. This method
can also be applied to the other cases investigated in this paper.

Démoulin et al. (1994) investigated the magnetic field
topology of a flare event. They found that the high intensity
regions of Hα were located on or close to the separator lines.
Their findings show a link to ours and support the possibil-
ity of transferring our results to 3D. We can also easily extend
the model to 2.5D with the addition of a third spatial coordi-
nate; by taking into account an extra Fourier component of the
form eimy, where m is the azimuthal mode number. This would
lead to coupling of all the wave modes, and probably result
in energy accumulating at both the separatrices and the null
points.

Note that all the experiments conducted here that send in
an Alfvén wave pulse from the boundary do so across a sep-
aratrix. If the initial wave pulse does not cross a separatrix, it
will follow the field lines and leave the box (there will be no
wave accumulation at any separatrices).
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Appendix A

We can learn something about the nature of the wave damp-
ing by considering an extension to our WKB expansion for the
Alfvén wave investigated in Sect. 4.1.1. We assume solutions
of the form ei(ωφ−ωt), whereω � 1 and φ is (now) of order unity.
We expand in terms of 1/ω, such that φ = φ0 +

1
ω
φ1 +

1
ω

2
φ2 + ...

and consider η = η0/ω
2, where η0 is also of order unity. Here

we have assumed a specific scaling for the resistivity. This is for
illustration only; alternative forms are possible and they modify
the series expansion for φ.

Using the same method with which we reached Eq. (11),
the linearised equations for the Alfvén wave including resistiv-
ity can be combined to form a single wave equation for b y:

∂2by
∂t2
= (B0 · ∇)2 by +

η0

ω2

∂

∂t
∇2by.

Substituting in by = ei(ωφ−ωt) gives:

−ω2by = −ω2 (B0 · ∇φ)2 by + iωby (B0 · ∇)2 φ

+η0

(
iω |∇φ|2 by + by∇2φ

)
.

Fig. A.1. Behaviour of log (φ1) against time elapsed. The slope of the
line between s = 0.1 and s = 0.5 is 4ω.

Now let φ = φ0 + i η0

ω
φ1, where we assume φ1 has a complex

form (for consistency later) and we have taken out a factor of η 0

(for simplification).

−ω2 = −ω2 (B0 · ∇φ0)2 − 2iωη0 (B0 · ∇φ0) (B0 · ∇φ1)

+η2
0 (B0 · ∇φ1)2 + iω (B0 · ∇)2 φ0 − η0 (B0 · ∇)2 φ1

+iη0ω |∇φ0|2 + [other terms] .

Comparing terms of order of ω2 and ω:

(B0 · ∇φ0)2 = 1⇒ (B0 · ∇φ0) = 1 ,

−2η0 (B0 · ∇φ0) (B0 · ∇φ1) + (B0 · ∇)2 φ0 + η0 |∇φ0|2 = 0

⇒ (B0 · ∇)φ1 =
1
2
|∇φ0|2 .

Now:

∇φ0 =

(
∂φ0

∂x
, 0,
∂φ0

∂z

)

⇒ |∇φ0|2 =
(
∂φ0

∂x

)2

+

(
∂φ0

∂z

)2

= p2 + q2,

where p = ∂φ0

∂x and q = ∂φ0

∂z as in Sect. 4.1.2. Hence:

ξ

(
Bx
∂φ1

∂x
+ Bz
∂φ1

∂z

)
=

1
2
ξ
(
p2 + q2

)
,

⇒ dφ1

ds
=

dx
ds
∂φ1

∂x
+

dz
ds
∂φ1

∂z
=

1
2
ξ
(
p2 + q2

)
, (A.1)

where ξ =
[(

x2 − z2 − 1
)

p − 2xzq
]
, and we have used the

characteristic equations from Sect. 4.1.2. Hence, we can solve
for φ1 by adding Eqs. (A.1) to (14) and utilising the same
Runge-Kutta method. The behaviour of φ 1 can be seen in
Fig. A.1, where logφ1 along the separatrix is plotted against s.
The behaviour is described by φ1 =

1
2 e4ωs, where ω = 2π.

Hence:

by = exp
[
i (ωφ0 − ωt)

]
exp

(
−ω2ηφ1

)
,

= exp
[
i (ωφ0 − ωt)

]
exp

{
−1

2
ω2η

[
exp (4ωs)

]}
. (A.2)

Therefore, the diffusive term will become important
when 1

2ω
2ηe4ωs becomes of order unity, i.e. on a timescale of

s ≈ − 1
4ω log η, under the above assumptions.
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