8,691 research outputs found

    Circuit approach to photonic heat transport

    Full text link
    We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determined by the photon transmission coefficient, which depends on the impedances of the metals and the coupling element. We study the total photonic power flow for different coupling impedances, both in the linear regime, where the temperature difference between the metals is small, and in the non-linear regime of large temperature differences.Comment: 6 pages, 6 figure

    Nurturing the young shoots of talent: Using action research for exploration and theory building

    Get PDF
    This is an Author's Accepted Manuscript of an article published in European Early Childhood Education Research Journal, 19(4), 433-450, 2011, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/1350293X.2011.623515.This paper reports the outcomes of a set of action research projects carried out by teacher researchers in 14 local education authorities in England, working collaboratively with university tutors, over a period of three years. The common aim of all the projects was to explore practical ways of nurturing the gifts and talents of children aged four–seven years. The project was funded by the Department of Education and Skills in England as part of the government's gifted and talented programme. The project teachers felt that their understanding of issues relating to nurturing the gifts and talents of younger children was enhanced through their engagement in the project. It was possible to map the findings of the projects to the English government's National Quality Standards for gifted and talented education which include: (1) identification; (2) effective provision in the classroom; (3) enabling curriculum entitlement and choice; (4) assessment for learning; (5) engaging with community, families and beyond. The findings are also analysed within the framework of good practice in educating children in the first years of schooling. Participating practitioners felt that action research offered them a suitable methodology to explore the complexity of the topic of giftedness through cycles of planning, action and reflection and personal theory building

    Finite dimensional quantizations of the (q,p) plane : new space and momentum inequalities

    Get PDF
    We present a N-dimensional quantization a la Berezin-Klauder or frame quantization of the complex plane based on overcomplete families of states (coherent states) generated by the N first harmonic oscillator eigenstates. The spectra of position and momentum operators are finite and eigenvalues are equal, up to a factor, to the zeros of Hermite polynomials. From numerical and theoretical studies of the large NN behavior of the product λ_m(N)λ_M(N)\lambda\_m(N) \lambda\_M(N) of non null smallest positive and largest eigenvalues, we infer the inequality δ_N(Q)Δ_N(Q)=σ_NN<2π\delta\_N(Q) \Delta\_N(Q) = \sigma\_N \overset{<}{\underset{N \to \infty}{\to}} 2 \pi (resp. δ_N(P)Δ_N(P)=σ_NN<2π\delta\_N(P) \Delta\_N(P) = \sigma\_N \overset{<}{\underset{N \to \infty}{\to}} 2 \pi ) involving, in suitable units, the minimal (δ_N(Q)\delta\_N(Q)) and maximal (Δ_N(Q)\Delta\_N(Q)) sizes of regions of space (resp. momentum) which are accessible to exploration within this finite-dimensional quantum framework. Interesting issues on the measurement process and connections with the finite Chern-Simons matrix model for the Quantum Hall effect are discussed

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers

    Full text link
    Scanning tunneling spectroscopies in the subKelvin temperature range were performed on superconducting Silicon epilayers doped with Boron in the atomic percent range. The resulting local differential conductance behaved as expected for a homogeneous superconductor, with an energy gap dispersion below +/- 10%. The spectral shape, the amplitude and temperature dependence of the superconductivity gap follow the BCS model, bringing further support to the hypothesis of a hole pairing mechanism mediated by phonons in the weak coupling limit.Comment: 4 pages, 3 figure

    Charge order at the frontier between the molecular and solid states in Ba3NaRu2O9

    Get PDF
    We show that the valence electrons of Ba3NaRu2O9, which has a quasi-molecular structure, completely crystallize below 210 K. Using an extended Hubbard model, we show that the charge ordering instability results from long-range Coulomb interactions. However, orbital ordering, metal-metal bonding and formation of a partial spin gap enforce the magnitude of the charge separation. The striped charge order and frustrated hcp lattice of Ru2O9 dimers lead to competition with a quasi-degenerate charge-melted phase under photo-excitation at low temperature. Our results establish a broad class of simple metal oxides as models for emergent phenomena at the border between the molecular and solid states.Comment: Minor changes, with supporting information. To appear in Phys. Rev. Let

    Report on the measurement of high frequency surface waves

    No full text

    Epidemic variability in complex networks

    Full text link
    We study numerically the variability of the outbreak of diseases on complex networks. We use a SI model to simulate the disease spreading at short times, in homogeneous and in scale-free networks. In both cases, we study the effect of initial conditions on the epidemic's dynamics and its variability. The results display a time regime during which the prevalence exhibits a large sensitivity to noise. We also investigate the dependence of the infection time on nodes' degree and distance to the seed. In particular, we show that the infection time of hubs have large fluctuations which limit their reliability as early-detection stations. Finally, we discuss the effect of the multiplicity of shortest paths between two nodes on the infection time. Furthermore, we demonstrate that the existence of even longer paths reduces the average infection time. These different results could be of use for the design of time-dependent containment strategies
    corecore