164 research outputs found
Exercise training results in depot-specific adaptations to adipose tissue mitochondrial function
We assessed differences in mitochondrial function in gluteal (gSAT) and abdominal subcutaneous adipose tissue (aSAT) at baseline and in response to 12-weeks of exercise training; and examined depot-specific associations with body fat distribution and insulin sensitivity (S-I). Obese, black South African women (n = 45) were randomized into exercise (n = 23) or control (n = 22) groups. Exercise group completed 12-weeks of aerobic and resistance training (n = 20), while the control group (n = 15) continued usual behaviours. Mitochondrial function (high-resolution respirometry and fluorometry) in gSAT and aSAT, SI (frequently sampled intravenous glucose tolerance test), body composition (dual-energy X-ray absorptiometry), and ectopic fat (MRI) were assessed pre- and post-intervention. At baseline, gSAT had higher mitochondrial respiratory capacity and hydrogen peroxide (H2O2) production than aSAT (p < 0.05). Higher gSAT respiration was associated with higher gynoid fat (p < 0.05). Higher gSAT H2O2 production and lower aSAT mitochondrial respiration were independently associated with lower SI (p < 0.05). In response to training, S-I improved and gynoid fat decreased (p < 0.05), while H2O2 production reduced in both depots, and mtDNA decreased in gSAT (p < 0.05). Mitochondrial respiration increased in aSAT and correlated with a decrease in body fat and an increase in soleus and hepatic fat content (p < 0.05). This study highlights the importance of understanding the differences in mitochondrial function in multiple SAT depots when investigating the pathophysiology of insulin resistance and associated risk factors such as body fat distribution and ectopic lipid deposition. Furthermore, we highlight the benefits of exercise training in stimulating positive adaptations in mitochondrial function in gluteal and abdominal SAT depots
Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation
In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≤10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress
Anatomy of a microearthquake sequence on an active normal fault
The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system
Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California
A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should be considered for seismic hazard assessment
Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California
A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should be considered for seismic hazard assessment
Relationship between high consumption of marine fatty acids in early pregnancy and hypertensive disorders in pregnancy
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldOBJECTIVE: To investigate whether there is a relationship between maternal intake of cod-liver oil in early and late pregnancy and hypertensive disorders in pregnancy. DESIGN: An observational prospective study. SETTING: Free-living conditions in a community with traditional fish and cod-liver oil consumption. POPULATION: Four hundred and eighty-eight low-risk pregnant Icelandic women. METHODS: Maternal use of cod-liver oil, foods and other supplements was estimated with a semiquantitative food frequency questionnaire covering food intake together with lifestyle factors for the previous 3 months. Questionnaires were filled out twice, between 11 and 15 weeks of gestation and between 34 and 37 weeks of gestation. Supplements related to hypertensive disorders in pregnancy, i.e. gestational hypertension and pre-eclampsia, were presented, with logistic regression controlling for potential confounding. MAIN OUTCOME MEASURES: Gestational hypertension, pre-eclampsia, cod-liver oil and multivitamins. RESULTS: The odds ratio for developing hypertensive disorders in pregnancy for women consuming liquid cod-liver oil was 4.7 (95% CI 1.8-12.6, P= 0.002), after adjusting for confounding factors. By dividing the amount of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) into centiles, the odds ratio for hypertensive disorders across groups for n-3 LCPUFA suggested a u-shaped curve (P = 0.008). Similar results were found for gestational hypertension alone. Further, the use of multivitamin supplements without vitamins A and D in late pregnancy doubled the odds of hypertensive disorders (OR 2.4, 95% CI 1.0-5.4, P= 0.044). CONCLUSIONS: Consumption of high doses of n-3 LCPUFA in early pregnancy, or other nutrients found in liquid cod-liver oil, may increase the risk of developing hypertensive disorders in pregnancy
Multivariate extremes, aggregation and risk estimation
We briefly introduce some basic facts about multivariate extreme value theory and present some new results regarding finite aggregates and multivariate extreme value distributions. Based on our results high-frequency data can considerably improve the quality of estimates of extreme movements in financial markets. Secondly, we present an empirical exploration of what the tails really look like for four foreign exchange rates sampled at varying frequencies. Both temporal and spatial dependence is considered. In particular we estimate the spectral measure, which along with the tail index, completely determines the extreme value distribution. Lastly, we apply our results to the problem of portfolio optimization or risk minimization. We analyse how the expected shortfall and value-at-risk scale with the time horizon and find that this scaling is not by a factor of the square root of time as is frequently used, but by a different power of time. We show that the accuracy of risk estimation can be drastically improved by using hourly or bihourly data.
- …