54 research outputs found
Deconfinement and freezeout boundaries in equilibrium thermal models
In different approaches, the temperature-baryon density plane of QCD matter
is studied for deconfinement and chemical freezeout boundaries. Results from
various heavy-ion experiments are compared with the recent lattice simulations,
the effective QCD-like Polyakov linear-sigma model, and the equilibrium thermal
models. Along the entire freezeout boundary, there is an excellent agreement
between the thermal model calculations and the experiments. Also, the thermal
model calculations agree well with the estimations deduced from the Polyakov
linear-sigma model (PLSM). At low baryonic density or high energies, both
deconfinement and chemical freezeout boundaries are likely coincident and
therefore the agreement with the lattice simulations becomes excellent as well,
while at large baryonic density, the two boundaries become distinguishable
forming a phase where hadrons and quark-gluon plasma likely coexist.Comment: 8 pages, 2 figures, accepted for publication in AHE
The Role of Electron Captures in Chandrasekhar Mass Models for Type Ia Supernovae
The Chandrasekhar mass model for Type Ia Supernovae (SNe Ia) has received
increasing support from recent comparisons of observations with light curve
predictions and modeling of synthetic spectra. It explains SN Ia events via
thermonuclear explosions of accreting white dwarfs in binary stellar systems,
being caused by central carbon ignition when the white dwarf approaches the
Chandrasekhar mass. As the electron gas in white dwarfs is degenerate,
characterized by high Fermi energies for the high density regions in the
center, electron capture on intermediate mass and Fe-group nuclei plays an
important role in explosive burning. Electron capture affects the central
electron fraction Y_e, which determines the composition of the ejecta from such
explosions. Up to the present, astrophysical tabulations based on shell model
matrix elements were only available for light nuclei in the sd-shell. Recently
new Shell Model Monte Carlo (SMMC) and large-scale shell model diagonalization
calculations have also been performed for pf-shell nuclei. These lead in
general to a reduction of electron capture rates in comparison with previous,
more phenomenological, approaches. Making use of these new shell model based
rates, we present the first results for the composition of Fe-group nuclei
produced in the central regions of SNe Ia and possible changes in the
constraints on model parameters like ignition densities and burning front
speeds.Comment: 26 pages, 8 figures, submitted to Ap
Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores
Electron-capture and -decay of nuclei in the core of massive stars
play an important role in the stages leading to a type II supernova explosion.
Nuclei in the f-p shell are particularly important for these reactions in the
post Silicon-burning stage of a presupernova star. In this paper, we
characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR)
for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained
from high energy, forward scattering (p,n) and (n,p) reactions. The energy of
the GTGR centroid is further generalised as function of nuclear
properties like mass number, isospin and other shell model properties of the
nucleus. Since a large fraction of the GT strength lies in the GTGR region, and
the GTGR is accessible for weak transitions taking place at energies relevant
to the cores of presupernova and collapsing stars, our results are relevant to
the study of important -capture and -decay rates of arbitrary,
neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and
Isobaric Analog States (IAS) energy systematics we compare the coupling
coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for
different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename:
Sutfigs.uu). If you have difficulty printing the figures, please contact
[email protected]. Accepted for publication in Phys. Rev. C, Nov 01,
199
Gamow-Teller strength distributions in fp-shell nuclei
We use the shell model Monte Carlo method to calculate complete 0f1p-shell
response functions for Gamow-Teller (GT) operators and obtain the corresponding
strength distributions using a Maximum Entropy technique. The approach is
validated against direct diagonalization for 48Ti. Calculated GT strength
distributions agree well with data from (n,p) and (p,n) reactions for nuclei
with A=48-64. We also calculate the temperature evolution of the GT+
distributions for representative nuclei and find that the GT+ distributions
broaden and the centroids shift to lower energies with increasing temperature
Electron capture on iron group nuclei
We present Gamow-Teller strength distributions from shell model Monte Carlo
studies of fp-shell nuclei that may play an important role in the pre-collapse
evolution of supernovae. We then use these strength distributions to calculate
the electron-capture cross sections and rates in the zero-momentum transfer
limit. We also discuss the thermal behavior of the cross sections. We find
large differences in these cross sections and rates when compared to the naive
single-particle estimates. These differences need to be taken into account for
improved modeling of the early stages of type II supernova evolution
Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa
Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.Spanish Ministry of Economy and Competitiveness [CTM2014-57949-R]info:eu-repo/semantics/publishedVersio
Shell-model Monte Carlo studies of fp-shell nuclei
We study the gross properties of even-even and nuclei with
using shell-model Monte Carlo methods. Our calculations account for all configurations in the -shell and employ the modified
Kuo-Brown interaction KB3. We find good agreement with data for masses and
total strengths, the latter employing effective charges and
. The calculated total Gamow-Teller strengths agree consistently
with the -values deduced from data if the shell model results
are renormalized by , as has already been established for -shell
nuclei. The present calculations therefore suggest that this renormalization
(i.e., in the nuclear medium) is universal.Comment: 20 pages, 7 figures, Caltech Preprint
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
- …