111,069 research outputs found
Thermophysical and transport properties of high temperature energy storage materials
Thermophysical and transport properties of high temperature energy storage material
The Decays to -wave Charmonium by Improved Bethe-Salpeter Approach
We re-calculate the exclusive semileptonic and nonleptonic decays of
meson to a -wave charmonium in terms of the improved Bethe-Salpeter (B-S)
approach, which is developed recently. Here the widths for the exclusive
semileptonic and nonleptonic decays, the form factors, and the charged lepton
spectrums for the semileptonic decays are precisely calculated. To test the
concerned approach by comparing with experimental measurements when the
experimental data are available, and to have comparisons with the other
approaches the results obtained by the approach and those by some approaches
else as well as the original B-S approach, which appeared in literature, are
comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table
Non-linear excitations in 1D correlated insulators
In this work we investigate charge transport in one-dimensional (1D)
insulators via semi-classical and perturbative renormalization group (RG)
methods. We consider the problem of electron-electron, electron-phonon and
electron-two-level system interactions. We show that non-linear collective
modes such as polarons and solitons are reponsible for transport. We find a new
excitation in the Mott insulator: the polaronic soliton. We discuss the
differences between band and Mott insulators in terms of their spin spectrum
and obtain the charge and spin gaps in each one of these systems. We show that
electron-electron interactions provide strong renormalizations of the energy
scales in the problem.Comment: 29 page
Estimating Form Factors of and their Applications to Semi-leptonic and Non-leptonic Decays
and weak transition
form factors are estimated for the whole physical region with a method based on
an instantaneous approximated Mandelstam formulation of transition matrix
elements and the instantaneous Bethe-Salpeter equation. We apply the estimated
form factors to branching ratios, CP asymmetries and polarization fractions of
non-leptonic decays within the factorization approximation. And we study the
non-factorizable effects and annihilation contributions with the perturbative
QCD approach. The branching ratios of semi-leptonic decays are also evaluated. We show that the calculated
decay rates agree well with the available experimental data. The longitudinal
polarization fraction of decays are when
denotes a light meson, and are when denotes a
() meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also
changed
The NLO QCD Corrections to Meson Production in Decays
The decay width of to meson is evaluated at the next-to-leading
order(NLO) accuracy in strong interaction. Numerical calculation shows that the
NLO correction to this process is remarkable. The quantum
chromodynamics(QCD)renormalization scale dependence of the results is obviously
depressed, and hence the uncertainties lying in the leading order calculation
are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende
Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys
Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a
function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs
as a function of concentration. The magnetocrystalline anisotropy in these
alloys is studied using first-principles calculations based on the coherent
potential approximation and the disordered local moment method. The anisotropy
is fairly small and sensitive to the variations in composition and temperature
due to the cancellation of large contributions from different parts of the
Brillouin zone. Concentration and temperature-driven SRTs are found in
reasonable agreement with experimental data. Contributions from specific
band-structure features are identified and used to explain the origin of the
SRTs.Comment: 6 pages, 8 figure
Verwey transition in FeO thin films: Influence of oxygen stoichiometry and substrate-induced microstructure
We have carried out a systematic experimental investigation to address the
question why thin films of FeO (magnetite) generally have a very broad
Verwey transition with lower transition temperatures as compared to the bulk.
We observed using x-ray photoelectron spectroscopy, x-ray diffraction and
resistivity measurements that the Verwey transition in thin films is
drastically influenced not only by the oxygen stoichiometry but especially also
by the substrate-induced microstructure. In particular, we found (1) that the
transition temperature, the resistivity jump, and the conductivity gap of fully
stoichiometric films greatly depends on the domain size, which increases
gradually with increasing film thickness, (2) that the broadness of the
transition scales with the width of the domain size distribution, and (3) that
the hysteresis width is affected strongly by the presence of antiphase
boundaries. Films grown on MgO (001) substrates showed the highest and sharpest
transitions, with a 200 nm film having a T of 122K, which is close to the
bulk value. Films grown on substrates with large lattice constant mismatch
revealed very broad transitions, and yet, all films show a transition with a
hysteresis behavior, indicating that the transition is still first order rather
than higher order.Comment: 9 pages, 12 figure
Hadronic production of the -wave excited -states ()
Adopting the complete approach of the perturbative QCD (pQCD)
and updated parton distribution functions, we have estimated the hadronic
production of -wave excited -states (). In the estimate,
special care on the relation of the production amplitude to the derivative of
wave function at origin of the potential model is payed. For experimental
references, main uncertainties are discussed, and the total cross sections and
the distributions of the production with reasonable cuts at the energies of
Tevatron and LHC are computed and presented. The results show that -wave
production may contribute to the -meson production indirectly by a factor
about 0.5 of the direct production, and with such a big cross section, it is
worth further to study the possibility to observe the -wave production
itself experimentally.Comment: 23 pages, 9 figures, to replace for revising the misprints ec
- …