1,516 research outputs found

    Atom lithography without laser cooling

    Get PDF
    Using direct-write atom lithography, Fe nanolines are deposited with a pitch of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to 6 nm. These values are achieved by relying on geometrical collimation of the atomic beam, thus without using laser collimation techniques. This opens the way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure

    γ-H2AX foci as in vivo effect biomarker in children emphasize the importance to minimize x-ray doses in paediatric CT imaging

    Get PDF
    Objectives: Investigation of DNA damage induced by CT x-rays in paediatric patients versus patient dose in a multicentre setting. Methods: From 51 paediatric patients (median age, 3.8 years) who underwent an abdomen or chest CT examination in one of the five participating radiology departments, blood samples were taken before and shortly after the examination. DNA damage was estimated by scoring gamma-H2AX foci in peripheral blood T lymphocytes. Patient-specific organ and tissue doses were calculated with a validated Monte Carlo program. Individual lifetime attributable risks (LAR) for cancer incidence and mortality were estimated according to the BEIR VII risk models. Results: Despite the low CT doses, a median increase of 0.13 gamma-H2AX foci/cell was observed. Plotting the induced gamma-H2AX foci versus blood dose indicated a low-dose hypersensitivity, supported also by an in vitro dose-response study. Differences in dose levels between radiology centres were reflected in differences in DNA damage. LAR of cancer mortality for the paediatric chest CT and abdomen CT cohort was 0.08 and 0.13% respectively. Conclusion: CT x-rays induce DNA damage in paediatric patients even at low doses and the level of DNA damage is reduced by application of more effective CT dose reduction techniques and paediatric protocols

    Effect of high temperature deposition on CoSi 2 phase formation

    Get PDF
    Abstract: This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism

    Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner

    No full text
    The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia

    Vaginal cuff dehiscence in laparoscopic hysterectomy: influence of various suturing methods of the vaginal vault

    Get PDF
    Vaginal cuff dehiscence (VCD) is a severe adverse event and occurs more frequently after total laparoscopic hysterectomy (TLH) compared with abdominal and vaginal hysterectomy. The aim of this study is to compare the incidence of VCD after various suturing methods to close the vaginal vault. We conducted a retrospective cohort study. Patients who underwent TLH between January 2004 and May 2011 were enrolled. We compared the incidence of VCD after closure with transvaginal interrupted sutures versus laparoscopic interrupted sutures versus a laparoscopic single-layer running suture. The latter was either bidirectional barbed or a running vicryl suture with clips placed at each end commonly used in transanal endoscopic microsurgery. Three hundred thirty-one TLHs were included. In 75 (22.7 %), the vaginal vault was closed by transvaginal approach; in 90 (27.2 %), by laparoscopic interrupted sutures; and in 166 (50.2 %), by a laparoscopic running suture. Eight VCDs occurred: one (1.3 %) after transvaginal interrupted closure, three (3.3 %) after laparoscopic interrupted suturing and four (2.4 %) after a laparoscopic running suture was used (p = .707). With regard to the incidence of VCD, based on our data, neither a superiority of single-layer laparoscopic closure of the vaginal cuff with an unknotted running suture nor of the transvaginal and the laparoscopic interrupted suturing techniques could be demonstrated. We hypothesise that besides the suturing technique, other causes, such as the type and amount of coagulation used for colpotomy, may play a role in the increased risk of VCD after TLH

    Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome

    Get PDF
    Background: Leigh syndrome is an early onset, progressive, neurodegenerative disorder with developmental and motor skills regression. Characteristic magnetic resonance imaging abnormalities consist of focal bilateral lesions in the basal ganglia and/or the brainstem. The main cause is a deficiency in oxidative phosphorylation due to mutations in an mtDNA or nuclear oxidative phosphorylation gene. Methods and results: A consanguineous Moroccan family with Leigh syndrome comprise 11 children, three of which are affected. Marker analysis revealed a homozygous region of 11.5 Mb on chromosome 20, containing 111 genes. Eight possible mitochondrial candidate genes were sequenced. Patients were homozygous for an unclassified variant (p.P193L) in the cardiolipin synthase gene (CRLS1). As this variant was present in 20% of a Moroccan control population and enzyme activity was only reduced to 50%, this could not explain the rare clinical phenotype in our family. Patients were also homozygous for an amino acid substitution (p.L159F) in C20orf7, a new complex I assembly factor. Parents were heterozygous and unaffected sibs heterozygous or homozygous wild type. The mutation affects the predicted S-adenosylmethionine (SAM) dependent methyltransferase domain of C20orf7, possibly involved in methylation of NDUFB3 during the assembly process. Blue native gel electrophoresis showed an altered complex I assembly with only 30-40% of mature complex I present in patients and 70-90% in carriers. Conclusions: A new cause of Leigh syndrome can be a defect in early complex I assembly due to C20orf7 mutations

    The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor α expression in the synovium

    Get PDF
    Objective: To determine whether the heterogeneous clinical response to tumour necrosis factor (TNF)alpha blocking therapy in rheumatoid arthritis (RA) can be predicted by TNF alpha expression in the synovium before initiation of treatment. Methods: Prior to initiation of infliximab treatment, arthroscopic synovial tissue biopsies were obtained from 143 patients with active RA. At week 16, clinical response was evaluated using the 28-joint Disease Activity Score (DAS28). Immunohistochemistry was used to analyse the cell infiltrate as well as the expression of various cytokines, adhesion molecules and growth factors. Stained sections were evaluated by digital image analysis. Student t tests were used to compare responders (decrease in DAS28 >= 1.2) with non-responders (decrease in DAS28 <1.2) and multivariable regression was used to identify the independent predictors of clinical response. Results: Synovial tissue analysis confirmed our hypothesis that the baseline level of TNF alpha expression is a significant predictor of response to TNF alpha blocking therapy. TNF alpha expression in the intimal lining layer and synovial sublining were significantly higher in responders than in non-responders (p = 0.047 and p = 0.008, respectively). The numbers of macrophages, macrophage subsets and T cells (all able to produce TNF alpha) were also significantly higher in responders than in non-responders. The expression of interleukin (IL)1 beta, IL6, IL18, IL10, E-selectin, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was not associated with response to anti-TNF alpha treatment. Conclusion: The effects of TNF alpha blockade are in part dependent on synovial TNF alpha expression and infiltration by TNF alpha producing inflammatory cells. Clinical response cannot be predicted completely, indicating involvement of other as yet unknown mechanism

    2D-Based 3D Volume Retrieval Using Singular Value Decomposition of Detected Regions

    Get PDF
    In this paper, a novel 3D retrieval model to retrieve medical volumes using 2D images as input is proposed. The main idea consists of applying a multi–scale detection of saliency of image regions. Then, the 3D volumes with the regions for each of the scales are associated with a set of projections onto the three canonical planes. The 3D shape is indirectly represented by a 2D–shape descriptor so that the 3D–shape matching is transformed into measuring similarity between 2D–shapes. The shape descriptor is defined by the set of the k largest singular values of the 2D images and Euclidean distance between the vector descriptors is used as a similarity measure. The preliminary results obtained on a simple database show promising performance with a mean average precision (MAP) of 0.82 and could allow using the approach as part of a retrieval system in clinical routine

    Three-dimensional coherence of the conscious body image

    Get PDF
    We experience our body as a coherent object in the three-dimensional (3-D) world. In contrast, the body is represented in somatosensory cortex as a fragmented collection of two-dimensional (2-D) maps. Recent results have suggested that some forms of higher-level body representations maintain this fragmentation, for example by showing different patterns of distortion for two surfaces of a single body part, such as the palmar and dorsal hand surfaces. This study investigated the 3-D coherence of the conscious body image of the hand by comparing perceptual biases of perceived hand shape on the dorsal and palmar surfaces. Participants made forced-choice judgments of whether observed hand images were thinner or wider than their own left or right hand, and perceptual distortions of the hand image were assessed by fitting psychometric functions. The results suggested that the hand is consciously represented as a fully coherent, 3-D object. Specifically: (1) similar overall levels of distortion were found on the palmar and dorsal hand surfaces, (2) comparable laterality effects were found on both surfaces (left hand represented as wider than right hand), and (3) the magnitude of distortions were strongly correlated across the two surfaces. Whereas other recent results have suggested that perceptual abilities such as position sense, tactile size perception, and tactile localisation may rely on fragmented, 2-D representations of individual skin surfaces, the present results suggest that, in striking contrast, the conscious body image represents the body (or, at least the hand) as a coherent, 3-D object
    corecore