6,949 research outputs found
DiBELLA: Distributed long read to long read alignment
We present a parallel algorithm and scalable implementation for genome analysis, specifically the problem of finding overlaps and alignments for data from "third generation" long read sequencers [29]. While long sequences of DNA offer enormous advantages for biological analysis and insight, current long read sequencing instruments have high error rates and therefore require different approaches to analysis than their short read counterparts. Our work focuses on an efficient distributed-memory parallelization of an accurate single-node algorithm for overlapping and aligning long reads. We achieve scalability of this irregular algorithm by addressing the competing issues of increasing parallelism, minimizing communication, constraining the memory footprint, and ensuring good load balance. The resulting application, diBELLA, is the first distributed memory overlapper and aligner specifically designed for long reads and parallel scalability. We describe and present analyses for high level design trade-offs and conduct an extensive empirical analysis that compares performance characteristics across state-of-the-art HPC systems as well as a commercial cloud architectures, highlighting the advantages of state-of-the-art network technologies
The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS
Neutron inelastic scattering has been used to measure the magnetic
excitations in powdered NiPS, a quasi-two dimensional antiferromagnet with
spin on a honeycomb lattice. The spectra show clear, dispersive magnons
with a meV gap at the Brillouin zone center. The data were fitted
using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no
magnetic exchange between the honeycomb planes. Magnetic exchange interactions
up to the third intraplanar nearest-neighbour were required. The fits show
robustly that NiPS has an easy axis anisotropy with meV and
that the third nearest-neighbour has a strong antiferromagnetic exchange of
meV. The data can be fitted reasonably well with either
or , however the best quantitative agreement with high-resolution data
indicate that the nearest-neighbour interaction is ferromagnetic with meV and that the second nearest-neighbour exchange is small and
antiferromagnetic with meV. The dispersion has a minimum in the
Brillouin zone corner that is slightly larger than that at the Brillouin zone
center, indicating that the magnetic structure of NiPS is close to being
unstable.Comment: 21 pages, 7 figures, 33 reference
Can an ethical revival of prudence within prudential regulation tackle corporate psychopathy?
The view that corporate psychopathy played a significant role in causing the global financial crisis, although insightful, paints a reductionist picture of what we present as the broader issue. Our broader issue is the tendency for psychopathy, narcissism and Machiavellianism to cluster psychologically and culturally as ‘dark leadership’ within global financial institutions. Strong evidence for their co-intensification across society and in corporations ought to alarm financial regulators. We argue that an ‘ethical revival’ of prudence within prudential regulation ought to be included in any package of solutions. Referencing research on moral muteness and the role of language in framing thoughts and behaviours, we recommend that regulators define prudence in an explicitly normative sense, an approach that may be further strengthened by drawing upon a widely appealing ethic of intergenerational care. An ethical revival of prudence, we argue, would allow the core problems of greed and myopia highlighted by corporate psychopathy theory to be addressed in a politically sensitive manner which recognises the pitfalls of regulating directly against corporate psychopathy. Furthermore, it would provide a viable conceptual framework to guide regulators along the treacherous path to more intrusive cultural regulation
Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals
An investigation on stochastic deflection of high-energy negatively charged
particles in a bent crystal was carried out. On the basis of analytical
calculation and numerical simulation it was shown that it exists a maximum
angle at which most of the beam is deflected. The existence of a maximum, which
is taken in the correspondence of the optimal radius of curvature, is a novelty
with respect to the case of positively charged particles, for which the
deflection angle can be freely increased by increasing the crystal length. This
difference has to be ascribed to the stronger contribution of incoherent
scattering affecting the dynamics of negative particles that move closer to
atomic nuclei and electrons. We therefore identified the ideal parameters for
the exploitation of axial confinement for negatively charged particle beam
manipulation in future high-energy accelerators, e.g., ILC or muon colliders
Reasoning About a Service-oriented Programming Paradigm
This paper is about a new way for programming distributed applications: the
service-oriented one. It is a concept paper based upon our experience in
developing a theory and a language for programming services. Both the
theoretical formalization and the language interpreter showed us the evidence
that a new programming paradigm exists. In this paper we illustrate the basic
features it is characterized by
A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4
A model for the simulation of orientational effects in straight and bent
periodic atomic structures is presented. The continuum potential approximation
has been adopted.The model allows the manipulation of particle trajectories by
means of straight and bent crystals and the scaling of the cross sections of
hadronic and electromagnetic processes for channeled particles. Based on such a
model, an extension of the Geant4 toolkit has been developed. The code has been
validated against data from channeling experiments carried out at CERN
Planar channeling and quasichanneling oscillations in a bent crystal
Particles passing through a crystal under planar channeling experience
transverse oscillations in their motion. As channeled particles approach the
atomic planes of a crystal, they are likely to be dechanneled. This effect was
used in ion-beam analysis with MeV energy. We studied this effect in a bent
crystal for positive and negative particles within a wide range of energies in
sight of application of such crystals at accelerators. We found the conditions
for the appearance or not of channeling oscillations. Indeed a new kind of
oscillations, strictly related to the motion of over-barrier particles, i.e.
quasichanneling particles, has been predicted. Such oscillations, named planar
quasichanneling oscillations, possess a different nature than channeling
oscillations. Through computer simulation, we studied this effect and provided
a theoretical interpretation for them. We show that channeling oscillations can
be observed only for positive particles while quasichanneling oscillations can
exist for particles with either sign. The conditions for experimental
observation of channeling and quasichanneling oscillations at existing
accelerators with available crystal has been found and optimized.Comment: 25 pages, 11 figure
Exotic magnetism on the quasi-FCC lattices of the double perovskites LaNaBO (B Ru, Os)
We find evidence for long-range and short-range ( 70 \AA~at 4 K)
incommensurate magnetic order on the quasi-face-centered-cubic (FCC) lattices
of the monoclinic double perovskites LaNaRuO and LaNaOsO
respectively. Incommensurate magnetic order on the FCC lattice has not been
predicted by mean field theory, but may arise via a delicate balance of
inequivalent nearest neighbour and next nearest neighbour exchange
interactions. In the Ru system with long-range order, inelastic neutron
scattering also reveals a spin gap 2.75 meV. Magnetic
anisotropy is generally minimized in the more familiar octahedrally-coordinated
systems, so the large gap observed for LaNaRuO may result from
the significantly enhanced value of spin-orbit coupling in this
material.Comment: 5 pages, 4 figure
- …
