412 research outputs found
Detectable primordial non-gaussianities and gravitational waves in k-inflation
An inflationary single field model with a non-trivial kinetic term for the
inflaton is discussed. It is shown that it is possible to have large primordial
non-gaussianities and large tensor-to-scalar ratio in a simple concrete model
with just a scalar field and a generalized kinetic term for the inflaton field.
This is potentially interesting in the prospect of new forthcoming
observations.Comment: 4 pages, 1 figure, REVTEX, to appear in PR
Absorption on horizon-wrapped branes
We compute the absorption cross section of space-time scalars on a static D2
rane, in global coordinates, wrapped on the S^2 of an AdS_2 X S^2 X CY_3
geometry. We discuss its relevance for the construction of the dual quantum
mechanics of Calabi-Yau black holes.Comment: 18 pages, 2 figure
Gravitino dark matter in brane-world cosmology
The gravitino dark matter hypothesis in the brane cosmology is studied. The
theoretical framework is the CMSSM for particle physics and RS II brane model
for gravity. It is found that the gravitino can play the role of dark matter in
the universe and we determine what the gravitino mass should be for different
values of the five-dimensional Planck mass. An upper bound is obtained for the
latter.Comment: Improved version with minor corrections, to appear in JCA
Dynamic performance of a low voltage microgrid with droop controlled distributed generation
Microgrids are small-scale highly controlled networks designed to supply electrical energy. From the operational point of view, microgrids are active distribution networks, facilitating the integration of distributed generation units. Major technical issues in this concept include system stability and protection coordination which are significantly influenced by the high penetration of inverter-interfaced distributed energy sources. These units often adopt the frequency-active power and voltage-reactive power droop control strategy to participate in the load sharing of an islanded microgrid. The scope of the paper is to investigate the dynamic performance of a low voltage laboratory-scale microgrid system, using experimental results and introduce the concept of Prony analysis for understanding the connected components. Several small disturbance test cases are conducted and the investigations focus on the influence of the droop controlled distributed generation sources
Cosmic strings and Natural Inflation
In the present work we discuss cosmic strings in natural inflation. Our
analysis is based entirely on the CMB quadrupole temperature anisotropy and on
the existing upper bound on the cosmic string tension. Our results show that
the allowed range for both parameters of the inflationary model is very
different from the range obtained recently if cosmic strings are formed at the
same time with inflation, while if strings are formed after inflation we find
that the parameters of the inflationary model are similar to the ones obtained
recently.Comment: 12 pages, 0 tables, 4 figures, accepted for publication in JHE
Measurement-based analysis of the dynamic performance of microgrids using system identification techniques
The dynamic performance of microgrids is of crucial importance, due to the increased complexity introduced by the combined effect of inverter interfaced and rotating distributed generation. This paper presents a methodology for the investigation of the dynamic behavior of microgrids based on measurements using Prony analysis and state-space black-box modeling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyze the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features
Development of measurement-based load models for the dynamic simulation of distribution grids
The advent of new types of loads, such as power electronics and the increased penetration of low-inertia motors in the existing distribution grids alter the dynamic behavior of conventional power systems. Therefore, more accurate dynamic, aggregate, load models are required for the rigorous assessment of the stability limits of modern distribution networks. In this paper, a measurement-based, input/output, aggregate load model is proposed, suitable for dynamic simulations of distribution grids. The new model can simulate complex load dynamics by employing variable-order transfer functions. The minimum required model order is automatically determined through an iterative procedure. The applicability and accuracy of the proposed model are thoroughly evaluated under distinct loading conditions and network topologies using measurements acquired from a laboratory-scale test setup. Furthermore, the performance of the proposed model is compared against other conventional load models, using the mean absolute percentage error
Bound states between dark matter particles and emission of gravitational radiation
Bound states of two weakly interactive massive particles are studied. It is
assumed that the WIMPonium is formed due to the gravitational interaction,
since the weak interaction can sometimes be repulsive. The lifetimes of the
spontaneous emission of gravitational radiation and of the WIMPs annihilation
into a pair of gravitons are computed, and are shown to be many orders of
magnitude larger than the age of the universe.Comment: Accepted for publication in GER
Extended RDF: Computability and Complexity Issues
ERDF stable model semantics is a recently proposed semantics for
ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs.
In this paper, we elaborate on the computability and complexity issues of the
ERDF stable model semantics. Based on the undecidability result of ERDF
stable model semantics, decidability under this semantics cannot be achieved,
unless ERDF ontologies of restricted syntax are considered. Therefore, we
propose a slightly modified semantics for ERDF ontologies, called ERDF #n-
stable model semantics. We show that entailment under this semantics is, in
general, decidable and also extends RDFS entailment. Equivalence statements
between the two semantics are provided. Additionally, we provide algorithms
that compute the ERDF #n-stable models of syntax-restricted and general
ERDF ontologies. Further, we provide complexity results for the ERDF #nstable
model semantics on syntax-restricted and general ERDF ontologies.
Finally, we provide complexity results for the ERDF stable model semantics
on syntax-restricted ERDF ontologies
- …
