3,189 research outputs found
Angle-resolved photoemission spectroscopy with quantum gas microscopes
Quantum gas microscopes are a promising tool to study interacting quantum
many-body systems and bridge the gap between theoretical models and real
materials. So far they were limited to measurements of instantaneous
correlation functions of the form , even though
extensions to frequency-resolved response functions would provide important information about the elementary
excitations in a many-body system. For example, single particle spectral
functions, which are usually measured using photoemission experiments in
electron systems, contain direct information about fractionalization and the
quasiparticle excitation spectrum. Here, we propose a measurement scheme to
experimentally access the momentum and energy resolved spectral function in a
quantum gas microscope with currently available techniques. As an example for
possible applications, we numerically calculate the spectrum of a single hole
excitation in one-dimensional models with isotropic and anisotropic
antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral
weight appears when a hole is created in an isotropic Heisenberg spin chain.
This effect slowly vanishes for anisotropic spin interactions and disappears
completely in the case of pure Ising interactions. The asymmetry strongly
depends on the total magnetization of the spin chain, which can be tuned in
experiments with quantum gas microscopes. An intuitive picture for the observed
behavior is provided by a slave-fermion mean field theory. The key properties
of the spectra are visible at currently accessible temperatures.Comment: 16+7 pages, 10+2 figure
Disparities in Child and Adolescent Mental Health and Mental Health Services in the U.S.
This is one of a series of five papers outlining the particular domains and dimensions of inequality where new research may yield a better understanding of responses to this growing issue.Mental health is recognized as a central determinant of individual well-being, family relationships, and engagement in society, yet there are considerable variations in mental health and mental health care according to race and ethnicity among youth in the U.S.In their report, Margarita Alegría and colleagues investigate disparities in mental health and mental health services for minority youth. Taking a developmental perspective, the authors explore four areas that may give rise to inequalities in mental health outcomes, highlight specific protective factors and barriers to care, and, finally, outline an agenda for future research
Diffusion of conserved charges in relativistic heavy ion collisions
In order to characterize nuclear matter under extreme conditions, we
calculate all diffusion transport coefficients related to baryon, electric and
strangeness charge for both a hadron resonance gas and a simplified kinetic
model of the quark-gluon plasma. We demonstrate that the diffusion currents do
not depend only on gradients of their corresponding charge density. Instead, we
show that there exists coupling between the different charge currents, in such
a way that it is possible for density gradients of a given charge to generate
dissipative currents of another charge. Within this scheme, the charge
diffusion coefficient is best viewed as a matrix, in which the diagonal terms
correspond to the usual charge diffusion coefficients, while the off-diagonal
terms describe the coupling between the different currents. In this letter, we
calculate for the first time the complete diffusion matrix including the three
charges listed above. We find that the baryon diffusion current is strongly
affected by baryon charge gradients, but also by its coupling to gradients in
strangeness. The electric charge diffusion current is found to be strongly
affected by electric and strangeness gradients, whereas strangeness currents
depend mostly on strange and baryon gradients.Comment: 6 pages, 2 figure
Black Hole Feedback On The First Galaxies
We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom
Equation of state sensitivities when inferring neutron star and dense matter properties
Understanding the dense matter equation of state at extreme conditions is an important open problem. Astrophysical observations of neutron stars promise to solve this, with NICER poised to make precision measurements of mass and radius for several stars using the waveform modelling technique. What has been less clear, however, is how these mass-radius measurements might translate into equation of state constraints and what are the associated equation of state sensitivities. We use Bayesian inference to explore and contrast the constraints that would result from different choices for the equation of state parametrization; comparing the well-established piecewise polytropic parametrization to one based on physically motivated assumptions for the speed of sound in dense matter. We also compare the constraints resulting from Bayesian inference to those from simple compatibility cuts. We find that the choice of equation of state parametrization and particularly its prior assumptions can have a significant effect on the inferred global mass-radius relation and the equation of state constraints. Our results point to important sensitivities when inferring neutron star and dense matter properties. This applies also to inferences from gravitational wave observations
Viable tax constitutions
Taxation is only sustainable if the general public complies with it. This observation is uncontroversial with tax practitioners but has been ignored by the public finance tradition, which has interpreted tax constitutions as binding contracts by which the power to tax is irretrievably conferred by individuals to government, which can then levy any tax it chooses. However, in the absence of an outside party enforcing contracts between members of a group, no arrangement within groups can be considered to be a binding contract, and therefore the power of tax must be sanctioned by individuals on an ongoing basis. In this paper we offer, for the first time, a theoretical analysis of this fundamental compliance problem associated with taxation, obtaining predictions that in some cases point to a re-interptretation of the theoretical constructions of the public finance tradition while in others call them into question
Lifetime of double occupancies in the Fermi-Hubbard model
We investigate the decay of artificially created double occupancies in a
repulsive Fermi-Hubbard system in the strongly interacting limit using
diagrammatic many-body theory and experiments with ultracold fermions on
optical lattices. The lifetime of the doublons is found to scale exponentially
with the ratio of the on-site repulsion to the bandwidth. We show that the
dominant decay process in presence of background holes is the excitation of a
large number of particle hole pairs to absorb the energy of the doublon. We
also show that the strongly interacting nature of the background state is
crucial in obtaining the correct estimate of the doublon lifetime in these
systems. The theoretical estimates and the experimental data are in fair
quantitative agreement
The formation of the first galaxies and the transition to low-mass star formation
The formation of the first galaxies at redshifts z ~ 10-15 signaled the
transition from the simple initial state of the universe to one of ever
increasing complexity. We here review recent progress in understanding their
assembly process with numerical simulations, starting with cosmological initial
conditions and modelling the detailed physics of star formation. In this
context we emphasize the importance and influence of selecting appropriate
initial conditions for the star formation process. We revisit the notion of a
critical metallicity resulting in the transition from primordial to present-day
initial mass functions and highlight its dependence on additional cooling
mechanisms and the exact initial conditions. We also review recent work on the
ability of dust cooling to provide the transition to present-day low-mass star
formation. In particular, we highlight the extreme conditions under which this
transition mechanism occurs, with violent fragmentation in dense gas resulting
in tightly packed clusters.Comment: 16 pages, 7 figures, appeared in the conference proceedings for IAU
Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf
Galaxies, a high resolution version (highly recommended) can be found at
http://www.ita.uni-heidelberg.de/~tgreif/files/greif08.pd
NcGRA2 as a molecular target to assess the parasiticidal activity of toltrazuril against Neospora caninum
The treatment of Neospora caninum infection in the bovine host is still at an experimental stage. In contrast to the in vivo situation, a wide range of compounds have been intensively investigated in cell-culture-based assays. Tools to demonstrate efficacy of treatment have remained conventional including morphological and cell biological criteria. In this work, we present a molecular assay that allows the distinction between live and dead parasites. Live parasites can be detected by measuring the mRNA level of specific genes, making use of the specific mRNA available in live cells. The NcGra2 gene of N. caninum, which is known to be expressed in both tachyzoites and bradyzoites, was used to establish a quantitative real-time RT-PCR, for monitoring parasite viability. Validation of the system in vitro was achieved using Neospora-infected cells that had been treated for 2-20 days with 30μg/ml toltrazuril. NcGRA2-RT-real time PCR demonstrated that a 10-day toltrazuril-treatment exerted parasitostatic activity, as assessed by the presence of NcGRA2-transcripts, whereas after a 14-day treatment period no NcGRA2-transcripts were detected, showing that the parasites were no longer viable. Concurrently, extended culture for a period of 4 weeks in the absence of the drug following the 14-day toltrazuril treatment did not lead to further parasite proliferation, confirming the parasiticidal effect of the treatment. This assay has the potential to be widely used in the development of novel drugs against N. caninum, with a view to distinguishing between parasiticidal and parasitostatic efficacy of given compound
- …
