117 research outputs found

    The role of PET/CT in Cogan’s syndrome

    Get PDF
    We report on the case of a 60-year-old woman with complaints of fatigue, coughing, anorexia, atypical chest pain, recurrent fever, and also ear pain and hearing loss. A test for anti-neutrophil cytoplasmic antibody (ANCA) was myeloperoxidase positive with p-ANCA specificity. Laboratory acute phase parameters were increased. A 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography investigation showed pathological uptake in the aorta ascendens, with no other involvement of the large vessels. After therapy with methylprednisolon intravenously and later prednisolon orally with methothrexate, her general condition and hearing loss improved both subjectively and objectively. “Atypical” Cogan’s syndrome was diagnosed on the basis of sensorineural deafness with improvement on steroids and large-vessel vasculitis of the aortic arch

    Parameterization-based tracking for the P2 experiment

    Full text link
    The P2 experiment in Mainz aims to determine the weak mixing angle θW at low momentum transfer by measuring the parity-violating asymmetry of elastic electronproton scattering. In order to achieve the intended precision of Δ(sin2 θW)/sin2θW = 0:13% within the planned 10 000 hours of running the experiment has to operate at the rate of 1011 detected electrons per second. Although it is not required to measure the kinematic parameters of each individual electron, every attempt is made to achieve the highest possible throughput in the track reconstruction chain. In the present work a parameterization-based track reconstruction method is described. It is a variation of track following, where the results of the computation-heavy steps, namely the propagation of a track to the further detector plane, and the fitting, are pre-calculated, and expressed in terms of parametric analytic functions. This makes the algorithm extremely fast, and well-suited for an implementation on an FPGA. The method also takes implicitly into account the actual phase space distribution of the tracks already at the stage of candidate construction. Compared to a simple algorithm, that does not use such information, this allows reducing the combinatorial background by many orders of magnitude, down to O(1) background candidate per one signal track. The method is developed specifically for the P2 experiment in Mainz, and the presented implementation is tightly coupled to the experimental conditions

    The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    Get PDF
    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data

    Infectious Bronchitis Coronavirus: Genome Evolution in Vaccinated and Non-Vaccinated SPF Chickens

    Get PDF
    Infectious Bronchitis virus (IBV) continues to cause significant economic losses for the chicken industry despite the use of many live IBV vaccines around the world. Several authors have suggested that vaccine-induced partial protection may contribute to the emergence of new IBV strains. In order to study this hypothesis, three passages of a challenge IBV were made in SPF chickens sham inoculated or vaccinated at day of age using a live vaccine heterologous to the challenge virus. All birds that were challenged with vaccine heterologous virus were positive for viral RNA. NGS analysis of viral RNA in the unvaccinated group showed a rapid selection of seven genetic variants, finally modifying the consensus genome of the viral population. Among them, five were non-synonymous, modifying one position in NSP 8, one in NSP 13, and three in the Spike protein. In the vaccinated group, one genetic variant was selected over the three passages. This synonymous modification was absent from the unvaccinated group. Under these conditions, the genome population of an IBV challenge virus evolved rapidly in both heterologous vaccinated and non-vaccinated birds, while the genetic changes that were selected and the locations of these were very different between the two groups
    corecore