27 research outputs found
Towards low-dimensional hole systems in Be-doped GaAs nanowires
GaAs was central to the development of quantum devices but is rarely used for
nanowire-based quantum devices with InAs, InSb and SiGe instead taking the
leading role. p-type GaAs nanowires offer a path to studying strongly-confined
0D and 1D hole systems with strong spin-orbit effects, motivating our
development of nanowire transistors featuring Be-doped p-type GaAs nanowires,
AuBe alloy contacts and patterned local gate electrodes towards making
nanowire-based quantum hole devices. We report on nanowire transistors with
traditional substrate back-gates and EBL-defined metal/oxide top-gates produced
using GaAs nanowires with three different Be-doping densities and various AuBe
contact processing recipes. We show that contact annealing only brings small
improvements for the moderately-doped devices under conditions of lower anneal
temperature and short anneal time. We only obtain good transistor performance
for moderate doping, with conduction freezing out at low temperature for
lowly-doped nanowires and inability to reach a clear off-state under gating for
the highly-doped nanowires. Our best devices give on-state conductivity 95 nS,
off-state conductivity 2 pS, on-off ratio ~, and sub-threshold slope 50
mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped
nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a
plateau in the sub-threshold region that is reproducible in separate cool-downs
and indicative of possible conductance quantization highlighting the potential
for future quantum device studies in this material system
p-GaAs nanowire MESFETs with near-thermal limit gating
Difficulties in obtaining high-performance p-type transistors and gate
insulator charge-trapping effects present two major challenges for III-V
complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs
nanowire metal-semiconductor field-effect transistor (MESFET) that eliminates
the need for a gate insulator by exploiting the Schottky barrier at the
metal-GaAs interface. Our device beats the best-performing p-GaSb nanowire
metal-oxide-semiconductor field effect transistor (MOSFET), giving a typical
sub-threshold swing of 62 mV/dec, within 4% of the thermal limit, on-off ratio
, on-resistance ~700 k, contact resistance ~30 k,
peak transconductance 1.2 S/m and high-fidelity ac operation at
frequencies up to 10 kHz. The device consists of a GaAs nanowire with an
undoped core and heavily Be-doped shell. We carefully etch back the nanowire at
the gate locations to obtain Schottky-barrier insulated gates whilst leaving
the doped shell intact at the contacts to obtain low contact resistance. Our
device opens a path to all-GaAs nanowire MESFET complementary circuits with
simplified fabrication and improved performance
InAs nanowire transistors with multiple, independent wrap-gate segments
We report a method for making horizontal wrap-gate nanowire transistors with
up to four independently controllable wrap-gated segments. While the step up to
two independent wrap-gates requires a major change in fabrication methodology,
a key advantage to this new approach, and the horizontal orientation more
generally, is that achieving more than two wrap-gate segments then requires no
extra fabrication steps. This is in contrast to the vertical orientation, where
a significant subset of the fabrication steps needs to be repeated for each
additional gate. We show that cross-talk between adjacent wrap-gate segments is
negligible despite separations less than 200 nm. We also demonstrate the
ability to make multiple wrap-gate transistors on a single nanowire using the
exact same process. The excellent scalability potential of horizontal wrap-gate
nanowire transistors makes them highly favourable for the development of
advanced nanowire devices and possible integration with vertical wrap-gate
nanowire transistors in 3D nanowire network architectures.Comment: 18 pages, 5 figures, In press for Nano Letters (DOI below
Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors
We report the development of nanowire field-effect transistors featuring an
ultra-thin parylene film as a polymer gate insulator. The room temperature,
gas-phase deposition of parylene is an attractive alternative to oxide
insulators prepared at high temperatures using atomic layer deposition. We
discuss our custom-built parylene deposition system, which is designed for
reliable and controlled deposition of <100 nm thick parylene films on III-V
nanowires standing vertically on a growth substrate or horizontally on a device
substrate. The former case gives conformally-coated nanowires, which we used to
produce functional -gate and gate-all-around structures. These give
sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding at
room temperature. For the gate-all-around structure, we developed a novel
fabrication strategy that overcomes some of the limitations with previous
lateral wrap-gate nanowire transistors. Finally, we show that parylene can be
deposited over chemically-treated nanowire surfaces; a feature generally not
possible with oxides produced by atomic layer deposition due to the surface
`self-cleaning' effect. Our results highlight the potential for parylene as an
alternative ultra-thin insulator in nanoscale electronic devices more broadly,
with potential applications extending into nanobioelectronics due to parylene's
well-established biocompatible properties
Thermopower as a tool to investigate many-body effects in quantum systems
Measuring the thermopower of a confined quantum system reveals important information about its excitation spectrum. Our simulations show how this kind of transport spectroscopy is able to extract a clear signal for the onset of Wigner localization in a nanowire segment. This demonstrates that thermopower measurements provide a tool for investigating complex many-body quantum effects, which is less intrusive than the usual charge-stability diagram as no high source-drain bias is required. While the effect is most pronounced for weak tunnel coupling and low temperatures, the excited states also significantly affect the thermopower spectrum at moderate temperature, adding distinct features to the characteristic thermopower lineshape. (C) 2014 AIP Publishing LLC
Post-growth shaping and transport anisotropy in 2D InAs nanofins
We report on the post-growth shaping of free-standing 2D InAs nanofins that
are grown by selective-area epitaxy and mechanically transferred to a separate
substrate for device fabrication. We use a citric acid based wet etch that
enables complex shapes, e.g., van der Pauw cloverleaf structures, with
patterning resolution down to 150 nm as well as partial thinning of the nanofin
to improve the gate response. We exploit the high sensitivity of the cloverleaf
structures to transport anisotropy to address the fundamental question of
whether there is a measurable transport anisotropy arising from
wurtzite/zincblende polytypism in 2D InAs nanostructures. We demonstrate a
mobility anisotropy of order 2-4 at room temperature arising from polytypic
stacking faults in our nanofins. Our work highlights a key materials
consideration for devices featuring self-assembled 2D III-V nanostructures
using advanced epitaxy methods
P-GaAs Nanowire Metal-Semiconductor Field-Effect Transistors with Near-Thermal Limit Gating
Difficulties in obtaining high-performance p-type transistors and gate insulator charge-trapping effects present two major challenges for III–V complementary metal–oxide semiconductor (CMOS) electronics. We report a p-GaAs nanowire metal–semiconductor field-effect transistor (MESFET) that eliminates the need for a gate insulator by exploiting the Schottky barrier at the metal–GaAs interface. Our device beats the best-performing p-GaSb nanowire metal–oxide−semiconductor field effect transistor (MOSFET), giving a typical subthreshold swing of 62 mV/dec, within 4% of the thermal limit, on–off ratio ∼105, on-resistance ∼700 kΩ, contact resistance ∼30 kΩ, peak transconductance 1.2 μS/μm, and high-fidelity ac operation at frequencies up to 10 kHz. The device consists of a GaAs nanowire with an undoped core and heavily Be-doped shell. We carefully etch back the nanowire at the gate locations to obtain Schottky-barrier insulated gates while leaving the doped shell intact at the contacts to obtain low contact resistance. Our device opens a path to all-GaAs nanowire MESFET complementary circuits with simplified fabrication and improved performance.This work was funded by the Australian Research Council (ARC) grants
DP170102552 and DP170104024, the University of New South Wales, Danish National Research Foundation, and the Innovation Fund Denmark