We report the development of nanowire field-effect transistors featuring an
ultra-thin parylene film as a polymer gate insulator. The room temperature,
gas-phase deposition of parylene is an attractive alternative to oxide
insulators prepared at high temperatures using atomic layer deposition. We
discuss our custom-built parylene deposition system, which is designed for
reliable and controlled deposition of <100 nm thick parylene films on III-V
nanowires standing vertically on a growth substrate or horizontally on a device
substrate. The former case gives conformally-coated nanowires, which we used to
produce functional Ω-gate and gate-all-around structures. These give
sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding 103 at
room temperature. For the gate-all-around structure, we developed a novel
fabrication strategy that overcomes some of the limitations with previous
lateral wrap-gate nanowire transistors. Finally, we show that parylene can be
deposited over chemically-treated nanowire surfaces; a feature generally not
possible with oxides produced by atomic layer deposition due to the surface
`self-cleaning' effect. Our results highlight the potential for parylene as an
alternative ultra-thin insulator in nanoscale electronic devices more broadly,
with potential applications extending into nanobioelectronics due to parylene's
well-established biocompatible properties