59 research outputs found

    Metastable Voltage States of Coupled Josephson Junctions

    Full text link
    We investigate a chain of capacitively coupled Josephson junctions in the regime where the charging energy dominates over the Josephson coupling, exploiting the analogy between this system and a multi-dimensional crystal. We find that the current-voltage characteristic of the current-driven chain has a staircase shape, beginning with an (insulating) non-zero voltage plateau at small currents. This behavior differs qualitatively from that of a single junction, which should show Bloch oscillations with vanishing dc voltage. The simplest system where this effect can be observed consists of three grains connected by two junctions. The theory explains the results of recent experiments on Josephson junction arrays.Comment: 5 pages, 4 figures include

    When does alliance proactiveness matter to market performance? A Comparative Case Analysis

    Get PDF
    Relationships with external partners can provide several benefits for firms. To obtain such benefits, firms must develop competencies and capabilities that enhance their ability to create and capture value in inter-organizational collaborations. In this article, we focus on one of these capabilities: alliance proactiveness. Drawing on configuration theory, we examine the performance effects of alliance proactiveness within the broader context of the firm and its market environment. Using a sample of 68 firms involved in technology transfer, we examine the interplay between alliance proactiveness and two major sets of factors—organizational factors and environmental factors—to identify configurations sufficient for market performance. The findings of a fuzzy-set Qualitative Comparative Analysis indicate the co-existence of alternative configurations for market performance that differ in their particular composition but are consistently sufficient pathways to market performance. Knowledge of these configurations yields novel insights into the complex pattern of causal factors and helps develop factor constellations in which alliance proactiveness is indeed effective and enhances market performance

    Resistance of Josephson Junction Arrays at Low Temperatures

    Full text link
    We study motion of vortices in arrays of Josephson junctions at zero temperature where it is controlled by quantum tunneling from one plaquette to another. The tunneling process is characterized by a finite time and can be slow compared to the superconducting gap (so that τΔ>>1\tau \Delta >> 1). The dissipation which accompanies this process arises from rare processes when a vortex excites a quasiparticle above the gap while tunneling through a single junction. We find that the dissipation is significant even in the case τΔ>>1\tau \Delta >> 1, in particular it is not exponentially small in this parameter. We use the calculated energy dissipation for the single vortex jump to estimate the physical resistance of the whole array.Comment: 24 pages, LaTeX references added, to appear in PR

    Collective Transport in Arrays of Quantum Dots

    Full text link
    (WORDS: QUANTUM DOTS, COLLECTIVE TRANSPORT, PHYSICAL EXAMPLE OF KPZ) Collective charge transport is studied in one- and two-dimensional arrays of small normal-metal dots separated by tunnel barriers. At temperatures well below the charging energy of a dot, disorder leads to a threshold for conduction which grows linearly with the size of the array. For short-ranged interactions, one of the correlation length exponents near threshold is found from a novel argument based on interface growth. The dynamical exponent for the current above threshold is also predicted analytically, and the requirements for its experimental observation are described.Comment: 12 pages, 3 postscript files included, REVTEX v2, (also available by anonymous FTP from external.nj.nec.com, in directory /pub/alan/dotarrays [as separate files]) [replacement: FIX OF WRONG VERSION, BAD SHAR] March 17, 1993, NEC

    Dynamics of An Underdamped Josephson Junction Ladder

    Full text link
    We show analytically that the dynamical equations for an underdamped ladder of coupled small Josephson junctions can be approximately reduced to the discrete sine-Gordon equation. As numerical confirmation, we solve the coupled Josephson equations for such a ladder in a magnetic field. We obtain discrete-sine-Gordon-like IV characteristics, including a flux flow and a ``whirling'' regime at low and high currents, and voltage steps which represent a lock-in between the vortex motion and linear ``phasons'', and which are quantitatively predicted by a simple formula. At sufficiently high anisotropy, the fluxons on the steps propagate ballistically.Comment: 11pages, latex, no figure

    Quantum Effects in Small-Capacitance Single Josephson Junctions

    Full text link
    We have measured the current-voltage (I-V) characteristics of small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. The single-junction I-V curve is sensitive to the impedance of the environment, which can be tuned IN SITU. We have observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance R_0' of the SQUID arrays is much higher than the quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling within the theory of current-biased single Josephson junctions. Based on the theory, we have calculated the I-V curves numerically in order to compare with the experimental ones at R_0' >> R_K. The numerical calculation agrees with the experiments qualitatively. We also discuss the R_0' dependence of the single-Josephson-junction I-V curve in terms of the superconductor-insulator transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure

    Vortex reflection at boundaries of Josephson-junction arrays

    Get PDF
    We study the propagation properties of a single vortex in square Josephson-junction arrays (JJA) with free boundaries and subject to an applied dc current. We model the dynamics of the JJA by the resistively and capacitively shunted junction (RCSJ) equations. For zero Stewart-McCumber parameter βc\beta_c we find that the vortex always escapes from the array when it gets to the boundary. For βc≥2.5\beta_c\geq 2.5 and for low currents we find that the vortex escapes, while for larger currents the vortex is reflected as an antivortex at one edge and the antivortex as a vortex at the other, leading to a stationary oscillatory state and to a non-zero time-averaged voltage. The escape and the reflection of a vortex at the array edges are qualitatively explained in terms of a coarse-grained model of a vortex interacting logarithmically with its image. We also discuss the case when the free boundaries are at 4545 degrees with respect to the direction of the vortex motion. Finally, we discuss the effect of self-induced magnetic fields by taking into account the full-range inductance matrix of the array, and find qualitatively equivalent results.Comment: 14 pages RevTex, 9 Postscript figure

    Row-switched states in two-dimensional underdamped Josephson junction arrays

    Full text link
    When magnetic flux moves across layered or granular superconductor structures, the passage of vortices can take place along channels which develop finite voltage, while the rest of the material remains in the zero-voltage state. We present analytical studies of an example of such mixed dynamics: the row-switched (RS) states in underdamped two-dimensional Josephson arrays, driven by a uniform DC current under external magnetic field but neglecting self-fields. The governing equations are cast into a compact differential-algebraic system which describes the dynamics of an assembly of Josephson oscillators coupled through the mesh current. We carry out a formal perturbation expansion, and obtain the DC and AC spatial distributions of the junction phases and induced circulating currents. We also estimate the interval of the driving current in which a given RS state is stable. All these analytical predictions compare well with our numerics. We then combine these results to deduce the parameter region (in the damping coefficient versus magnetic field plane) where RS states can exist.Comment: latex, 48 pages, 15 figs using psfi

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
    • …
    corecore