7,631 research outputs found

    A high voltage power supply for the AE-C and D low energy electron experiment

    Get PDF
    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions

    Doing Fine(s)? | Fines & Fees

    Get PDF

    Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

    Get PDF
    In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive algorithms, and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.Comment: 30 pages, 2 figures, 7 tables. Main change: Improvement of the bound of the main theorem (Th. 3), replacing r with sqrt(r

    A power conditioning system for radioisotope thermoelectric generator energy sources

    Get PDF
    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed

    On the Complexity of Robust PCA and 1\ell_1-norm Low-Rank Matrix Approximation

    Get PDF
    The low-rank matrix approximation problem with respect to the component-wise 1\ell_1-norm (1\ell_1-LRA), which is closely related to robust principal component analysis (PCA), has become a very popular tool in data mining and machine learning. Robust PCA aims at recovering a low-rank matrix that was perturbed with sparse noise, with applications for example in foreground-background video separation. Although 1\ell_1-LRA is strongly believed to be NP-hard, there is, to the best of our knowledge, no formal proof of this fact. In this paper, we prove that 1\ell_1-LRA is NP-hard, already in the rank-one case, using a reduction from MAX CUT. Our derivations draw interesting connections between 1\ell_1-LRA and several other well-known problems, namely, robust PCA, 0\ell_0-LRA, binary matrix factorization, a particular densest bipartite subgraph problem, the computation of the cut norm of {1,+1}\{-1,+1\} matrices, and the discrete basis problem, which we all prove to be NP-hard.Comment: 16 pages, some typos correcte

    Two Algorithms for Orthogonal Nonnegative Matrix Factorization with Application to Clustering

    Get PDF
    Approximate matrix factorization techniques with both nonnegativity and orthogonality constraints, referred to as orthogonal nonnegative matrix factorization (ONMF), have been recently introduced and shown to work remarkably well for clustering tasks such as document classification. In this paper, we introduce two new methods to solve ONMF. First, we show athematical equivalence between ONMF and a weighted variant of spherical k-means, from which we derive our first method, a simple EM-like algorithm. This also allows us to determine when ONMF should be preferred to k-means and spherical k-means. Our second method is based on an augmented Lagrangian approach. Standard ONMF algorithms typically enforce nonnegativity for their iterates while trying to achieve orthogonality at the limit (e.g., using a proper penalization term or a suitably chosen search direction). Our method works the opposite way: orthogonality is strictly imposed at each step while nonnegativity is asymptotically obtained, using a quadratic penalty. Finally, we show that the two proposed approaches compare favorably with standard ONMF algorithms on synthetic, text and image data sets.Comment: 17 pages, 8 figures. New numerical experiments (document and synthetic data sets

    Stratospheric constituent measurements using UV solar occultation technique

    Get PDF
    The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset

    Dynamics of coreless vortices and rotation-induced dissipation peak in superfluid films on rotating porous substrates

    Full text link
    We analyze dynamics of 3D coreless vortices in superfluid films covering porous substrates. The 3D vortex dynamics is derived from the 2D dynamics of the film. The motion of a 3D vortex is a sequence of jumps between neighboring substrate cells, which can be described, nevertheless, in terms of quasi-continuous motion with average vortex velocity. The vortex velocity is derived from the dissociation rate of vortex-antivortex pairs in a 2D film, which was developed in the past on the basis of the Kosterlitz-Thouless theory. The theory explains the rotation-induced dissipation peak in torsion-oscillator experiments on 4^4He films on rotating porous substrates and can be used in the analysis of other phenomena related to vortex motion in films on porous substrates.Comment: 8 pages, 3 figures submitted to Phys. Rev.

    Transverse NMR relaxation as a probe of mesoscopic structure

    Full text link
    Transverse NMR relaxation in a macroscopic sample is shown to be extremely sensitive to the structure of mesoscopic magnetic susceptibility variations. Such a sensitivity is proposed as a novel kind of contrast in the NMR measurements. For suspensions of arbitrary shaped paramagnetic objects, the transverse relaxation is found in the case of a small dephasing effect of an individual object. Strong relaxation rate dependence on the objects' shape agrees with experiments on whole blood. Demonstrated structure sensitivity is a generic effect that arises in NMR relaxation in porous media, biological systems, as well as in kinetics of diffusion limited reactions.Comment: 4 pages, 3 figure
    corecore