46,437 research outputs found

    The Distribution of the Asymptotic Number of Citations to Sets of Publications by a Researcher or From an Academic Department Are Consistent With a Discrete Lognormal Model

    Full text link
    How to quantify the impact of a researcher's or an institution's body of work is a matter of increasing importance to scientists, funding agencies, and hiring committees. The use of bibliometric indicators, such as the h-index or the Journal Impact Factor, have become widespread despite their known limitations. We argue that most existing bibliometric indicators are inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we pursue a principled approach to the development of an indicator to quantify the scientific impact of both individual researchers and research institutions grounded on the functional form of the distribution of the asymptotic number of citations. We validate our approach using the publication records of 1,283 researchers from seven scientific and engineering disciplines and the chemistry departments at the 106 U.S. research institutions classified as "very high research activity". Our approach has three distinct advantages. First, it accurately captures the overall scientific impact of researchers at all career stages, as measured by asymptotic citation counts. Second, unlike other measures, our indicator is resistant to manipulation and rewards publication quality over quantity. Third, our approach captures the time-evolution of the scientific impact of research institutions.Comment: 20 pages, 11 figures, 3 table

    Single-cycle gap soliton in a subwavelength structure

    Full text link
    We demonstrate that a single sub-cycle optical pulse can be generated when a pulse with a few optical cycles penetrates through resonant two-level dense media with a subwavelength structure. The single-cycle gap soliton phenomenon in the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations is observed. Our study shows that the subwavelength structure can be used to suppress the frequency shift caused by intrapulse four-wave mixing in continuous media and supports the formation of single-cycle gap solitons even in the case when the structure period breaks the Bragg condition. This suggests a way toward shortening high-intensity laser fields to few- and even single-cycle pulse durations.Comment: 4 pages, 6 figure

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    First Measurement of the Electromagnetic Form Factor of the Neutral Kaon at a Large Momentum Transfer and the Effect of SU(3)SU(3) Breaking

    Get PDF
    At large momentum transfers the photon interacts with the charges and spins of the constituent partons in a hadron. It is expected that the neutral kaon can acquire finite electromagnetic form factors because its wave function is affected by the order of magnitude difference between the mass of the strange quark and that of the down quark, or flavor SU(3)SU(3) breaking. We report on the first measurement of the form factor of neutral kaons at the large timelike momentum transfer of ∣Q2∣=17.4|Q^2|=17.4 GeV2^2 by measuring the cross section for e+e−→KSKLe^+e^-\to K_SK_L at s=4.17\sqrt{s}=4.17 GeV using CLEO-c data with an integrated luminosity of 586 pb−1^{-1}. We obtain FKSKL(17.4 GeV2)=5.3×10−3F_{K_SK_L}(17.4~\textrm{GeV}^2)=5.3\times10^{-3}, with a 90% C.L. interval of (2.9−8.2)×10−3(2.9-8.2)\times10^{-3}. This is nearly an order of magnitude smaller than FK+K−(17.4 GeV2)=(44±1)×10−3F_{K^+K^-}(17.4~\textrm{GeV}^2)=(44\pm1)\times10^{-3}, and indicates that the effect of SU(3)SU(3) breaking is small. In turn, this makes it unlikely that the recently observed strong violation of the pQCD prediction, Fπ+π−(∣Q2∣)/FK+K−(∣Q2∣)=fπ2/fK2F_{\pi^+\pi^-}(|Q^2|)/F_{K^+K^-}(|Q^2|)=f_\pi^2/f_K^2, which is based on the assumption of similar wave functions for the pions and kaons, can be attributed to SU(3)SU(3) breaking alone.Comment: 4 pages, 2 figures, accepted to PL

    On the canonical map of surfaces with q>=6

    Full text link
    We carry out an analysis of the canonical system of a minimal complex surface of general type with irregularity q>0. Using this analysis we are able to sharpen in the case q>0 the well known Castelnuovo inequality K^2>=3p_g+q-7. Then we turn to the study of surfaces with p_g=2q-3 and no fibration onto a curve of genus >1. We prove that for q>=6 the canonical map is birational. Combining this result with the analysis of the canonical system, we also prove the inequality: K^2>=7\chi+2. This improves an earlier result of the first and second author [M.Mendes Lopes and R.Pardini, On surfaces with p_g=2q-3, Adv. in Geom. 10 (3) (2010), 549-555].Comment: Dedicated to Fabrizio Catanese on the occasion of his 60th birthday. To appear in the special issue of Science of China Ser.A: Mathematics dedicated to him. V2:some typos have been correcte

    A mean field approach for string condensed states

    Full text link
    We describe a mean field technique for quantum string (or dimer) models. Unlike traditional mean field approaches, the method is general enough to include string condensed phases in addition to the usual symmetry breaking phases. Thus, it can be used to study phases and phases transitions beyond Landau's symmetry breaking paradigm. We demonstrate the technique with a simple example: the spin-1 XXZ model on the Kagome lattice. The mean field calculation predicts a number of phases and phase transitions, including a z=2 deconfined quantum critical point.Comment: 10 pages + appendix, 15 figure
    • …
    corecore