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At large momentum transfers the photon interacts with the charges and spins of the constituent partons
in a hadron. It is expected that the neutral kaon can acquire finite electromagnetic form factors because
its wave function is affected by the order of magnitude difference between the mass of the strange
quark and that of the down quark, or flavor SU(3) breaking. We report on the first measurement of the
form factor of neutral kaons at the large timelike momentum transfer of |Q 2| = 17.4 GeV2 by measuring
the cross section for e+e− → K S KL at 

√
s = 4.17 GeV using CLEO-c data with an integrated luminosity

of 586 pb−1. We obtain F K S K L (17.4 GeV2) = 5.3 × 10−3, with a 90% C.L. interval of (2.9–8.2) × 10−3.
This is nearly an order of magnitude smaller than F K + K − (17.4 GeV2) = (44 ± 1) × 10−3, and indicates
that the effect of SU(3) breaking is small. In turn, this makes it unlikely that the recently observed strong
violation of the pQCD prediction, Fπ+π− (|Q 2|)/F K + K − (|Q 2|) = f 2

π/ f 2
K , which is based on the assumption

of similar wave functions for the pions and kaons, can be attributed to SU(3) breaking alone.
© 2014 Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
The quark–gluon structure of hadrons is of the greatest in-
terest for our understanding of Quantum Chromodynamics (QCD)
as the fundamental theory of the strong interaction. One of the
most important tools for the study of the internal structure of
hadrons is the measurement of their electromagnetic form fac-
tors at large momentum transfers at which the probe photon sees
the charges and spins of the quarks and gluons in the hadron
rather than the composite hadron. Measurements of the electro-
magnetic form factors of the neutral mesons are particularly im-
portant because they can acquire finite values only due to their
internal structure. Open-flavor neutral pseudoscalar mesons like
K 0, D0, B0, and B0

s , which contain a quark and an antiquark of
different flavors and masses, can have finite electromagnetic form
factors. Kaons offer one of the best opportunities to study how
the different masses of the constituent quarks affect the quark
wave functions. With the strange quark being more than an or-
der of magnitude more massive than the 〈up/down〉 quarks [1]
the SU(3) flavor symmetry is broken in the kaon, and its wave
function acquires an antisymmetric component. According to per-
turbative QCD (pQCD), measurement of the form factor of the
neutral kaon at a large momentum transfer provides a sensitive
measure of the effect of SU(3) breaking [2]. Unfortunately, the
existing measurements of timelike form factors of neutral kaons
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are limited to small momentum transfers [3,4]. These include sev-
eral measurements made at Novosibirsk by the CMD-2 and SND
Collaborations between 1971 and 2006 [3,4]. All these measure-
ments are limited to 

√
s < 1.38 GeV, or |Q 2| < 1.90 GeV2. The

latest of these [4] reports an average cross section of ∼ 0.30 nb
in the region 

√
s = 1.34–1.38 GeV, which is a thousand times

larger than what we report in this Letter at 
√

s = 4.17 GeV. The
ACO and DM1 Collaborations at Orsay have reported measure-
ments at threshold [3] and in the region 

√
s = 1.400–2.175 GeV

[3,5]. For the region, 
√

s = 1.800–2.175 GeV, 〈s〉 ≈ 4 GeV2, they
report 〈σ 〉 = 0.053 ± 0.038 nb, and 〈F 2

K S KL
〉 = 0.014 ± 0.011, or

F K S KL (4 GeV2) = 0.12 ± 0.05. In this Letter we report on the first
measurement of the electromagnetic form factor of the neutral
kaon, F K S KL (|Q 2|), for the large timelike momentum transfer of
|Q 2| = 17.4 GeV2. Our measurement provides an estimate of the
level of SU(3) breaking in the kaon wave function, and also allows
us to comment on the conjecture that SU(3) breaking might be re-
sponsible for the recently observed large violation [6] of the pQCD
prediction that for large momentum transfers the ratio of the form
factors of the pion and the kaon, F (π±)/F (K ±) should be equal to
the ratio of the squares of their decay constants, f 2

π/ f 2
K [7,8].

No theoretical calculations of the form factor of the neutral
kaon exist. However, Lepage and Brodsky [2] have pointed out that
SU(3) breaking would give rise to an odd asymmetric component
in the kaon wave function, and conjectured that if it were large it
would lead to a large form factor for the neutral kaon. Chernyak
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and Zhitnitsky [9] proposed two-humped wave functions for pi-
ons and kaons based on QCD sum-rules, and predicted that the
antisymmetric component in the kaon wave function due to SU(3)

breaking is large. They did not calculate the form factor of the neu-
tral kaon, but found its effect on the form factor of the charged
kaon to be quite large. However, subsequent improved QCD sum-
rule calculations predicted that the SU(3) breaking effect on the
wave function of the kaon is small [10]. Recent lattice simula-
tions [11] and Ads/CFT-based QCD calculations [12] also find small
SU(3) breaking effects. In view of these developments it is impor-
tant to determine experimentally the level of SU(3) breaking effect
on the form factor of the kaon.

We determine the form factor of the neutral kaon, F K S KL (|Q 2|)
at |Q 2| = 17.4 GeV2 by measuring the cross section for e+e− →
K S K L , using data taken with the CLEO-c detector at

√
s = 4.17 GeV

with integrated luminosity L = 586 pb−1, which corresponds to
5.54 million ψ(4160) produced. The detector has been described
in detail before [13].

An important pQCD prediction is that the ratio of the branching
fractions for the decay of the vector resonances of charmonium to
leptons and hadrons are identical because both are proportional to
wave functions at the origin. This relation was successfully used
by us recently to measure the form factors of charged pions and
kaons at ψ(3770) and ψ(4160) [6]. In the present case, it leads to
the following relation between the branching fractions of the J/ψ ,
ψ(2S), and ψ(4160) resonances:

B(ψ(4160) → K S K L)

B( J/ψ,ψ(2S) → K S K L)
= B(ψ(4160) → electrons)

B( J/ψ,ψ(2S) → electrons)
.

Using the measured branching fractions for the decays of the
J/ψ resonance, we obtain the estimates B(ψ(4160) → K S K L) =
5.5 × 10−8 and NR(K S K L) = 0.05 events, and for ψ(2S) we obtain
B(ψ(4160) → K S K L) = 3.6 × 10−8 and NR(K S K L) = 0.08 events.
These 〈NR〉 = 0.065 ± 0.015 events due to strong decays of the
ψ(4160) resonance constitute a negligible background for the form
factor decays.

The event selection for e+e− → K S K L , K S → π+π− ,
K L(undetected) is as follows. Only two charged particles with
| cos θ | < 0.8 and zero net charge are allowed in the event, and
they are required to meet the standard criteria for track quality. We
identify K S by its decay into π+π− , which can be distinguished
from all other charged particles by requiring that the two detected
charged particles have their vertex displaced by more than 10 mm
from the e+e− intersection point, and that their reconstructed to-
tal momentum vector extrapolate to within 3σ of the interaction
point. To further identify the charged pions, we require that their
dE/dx in the drift chamber be consistent with the pion hypothe-
sis within 3σ . To reject electrons, we require that E(CC)/p < 0.9,
where E(CC) is the energy deposited by the charged particle in the
crystal calorimeter, and p is the track momentum.

We have examined two alternate procedures for taking ac-
count of the fact that the K L do not stop in the detector, but a
fraction (∼ 40%) of K L deposit some of their energy in the cen-
tral calorimeter. These shower-producing K L ’s can be identified
by their direction opposite to that of the identified K S , and such
events can be included in our sample of K S K L . This procedure, de-
tailed in Ref. [14], was used by us to identify the resonance decay,
ψ(2S) → K S K L , which has a strong signal yield. The other proce-
dure, which is more suitable when the signal yield is small, is to
forego all such events by not allowing any showers in the events,
and only use events identified by the K S .

We examine the relative merits of the two procedures by Monte
Carlo simulations. For background simulation we use 220 million
JETSET [15] generated MC e+e− → qq̄ → K S K L + X events. The nor-
malized distributions of these MC background events are shown in
Fig. 1. JETSET-based Monte Carlo predictions for e+e− → K S KL event distributions
as function of X ≡ E(K S )/E(beam): (a) events in which showers due to KL energy
deposits in the calorimeter are included, (b) events in which no showers are al-
lowed. Both MC distributions have been normalized to the total number of events
in the no shower case in the region X = 0.6–0.98 to be equal to that in the data
distribution, shown as the shaded histogram.

Fig. 1. We note that if the K L shower identified events are included
(histogram marked (a)) the background in the K S K L distribution is
nearly 4 times larger than when no showers are allowed in the
events (histogram marked (b)). On the other hand, the resulting
loss of signal events due to reduced overall efficiency when no
showers are allowed in the events is only a factor 1.6, from ef-
ficiency, ε = 39.8% to ε = 25.6%. With the very small number of
form factor events expected, reduction of the qq̄ background is the
most important criterion, and we opt for not allowing any show-
ers in the events. We reconstruct the total energy E(K S) of the
detected π+π− , and use the variable X ≡ E(K S)/E(beam) to iden-
tify K S K L events. In this variable, the e+e− → K S K L events are
expected to peak at X = 1.00.

In Fig. 2 we show two E(K S)/E(beam) distributions observed
with the event selection described above. In Fig. 2(a) we show the
distribution for

√
s = 2E(beam) = 4.17 GeV. In Fig. 2(b), for com-

parison we also show the distribution for 2E(beam) = M(ψ(2S)) =
3.686 GeV for CLEO-c data for 24.5 million ψ(2S). The X ≡
E(K S)/E(beam) distribution for ψ(2S) illustrates the very clean
identification of K S from e+e− → K S K L that our event selection
produces. With this event selection we obtain the branching frac-
tion B(ψ(2S) → K S K L) = (5.41 ± 0.36(stat)) × 10−5, which is in
good agreement with B(ψ(2S) → K S K L) = (5.28 ± 0.25(stat) ±
0.34(syst))×10−5 reported in our previous measurement in which
K L identified events were included [14].

In the X ≡ E(K S)/E(beam) distribution in Fig. 2(a) at
√

s =
4.17 GeV, s = |Q 2| = 17.4 GeV2 we observe 4 events in the sig-
nal region, X = 0.98–1.02. We also show the arbitrarily normal-
ized Monte Carlo determined peak shape expected for the form
factor signal at E(K S)/E(beam) = 1.00. Four scattered events are
observed in the off-peak region, X = 0.90–0.98, but they are insuf-
ficient for obtaining a reliable estimate of the background. A much
more reliable estimate of background can however be made by
normalizing the JETSET Monte Carlo distribution for the back-
ground to the data in the X-region in which the data have a sig-
nificant number of events. Fig. 1 shows such a distribution normal-
ized with the total number of events in the region X = 0.60–0.98.
It leads to the estimate of 0.3 background events in the signal re-
gion, X = 0.98–1.02. The central value of signal events is thus 3.7.
Using the method of Feldman and Cousins [16], the 90% confidence
interval is 1.3–8.3 events, corresponding to 4 observed events with
0.3 background events.

Signal Monte Carlo simulation leads to the determination of
event selection efficiency, ε = 25.6%. The validity of the Monte



334 K.K. Seth et al. / Physics Letters B 730 (2014) 332–335
Fig. 2. Distributions of the variable X ≡ E(K S )/E(beam) (a) for data taken at
√

s = 4.17 GeV, and (b) for comparison, data taken at
√

s = 3.686 GeV. The observed distributions
are given by the shaded histograms. The vertical dashed lines mark the signal region X = 0.98–1.02. The Monte Carlo determined resolution shapes are shown by the solid
line histograms. For (a),

√
s = 4.17 GeV, the MC curve has been normalized arbitrarily.
Carlo simulation for determination of the present reconstruction
efficiency is confirmed for ψ(2S) → K S K L (Fig. 2(b)), for which
241 ± 16 events were detected, leading to a branching fraction in
agreement with Ref. [14], as stated earlier. The correction factor
for initial state radiation is determined to be C = 0.781, using the
method of Bonneau and Martin [17]. The Born cross section is ob-
tained as

σB(K S K L) = N/[εLC] (1)

and the form factor is related to it as,

σB(s, K S K L) = (
πα2β3/3s

) × ∣
∣F K S K L (s)

∣
∣2

(2)

where α is the fine-structure constant, and β = 0.971 is the veloc-
ity of K S in the laboratory system. Eqs. (1) and (2) lead to:

σB
(
17.4 GeV2, K S K L

) = 0.032 pb, and

90% C.L. interval 0.011–0.071 pb, and (3)

F K S K L

(
17.4 GeV2) = 5.3 × 10−3, and

90% C.L. interval (3.1–7.9) × 10−3. (4)

These are the first measurements of the form factor and cross sec-
tion of the neutral kaon at the large momentum transfer, |Q 2| =
17.4 GeV2.

As is well known, QCD predicts the dimensional counting
rule, according to which the meson form factors decrease as
1/|Q 2|. It is interesting to note that the 1/|Q 2| extrapolation of
the DM1 measurement of F K S KL (4 GeV2) = 0.12 ± 0.05 leads to
F K S KL (17.4 GeV2) = (27 ± 12) × 10−3, which is 5 ± 2 times larger
than what we measure Eq. (4).

Our upper limit of σB < 0.071 pb is an order of magnitude
smaller than σB < 0.74 pb reported at

√
s = 3.67 GeV [18]. An ear-

lier CLEO measurement at
√

s = 3.77 GeV was compromised by
unresolved K S K L yield from ψ(2S) populated by ISR, and 8 events
were observed in the signal region with a background estimate
of 9 events. The 90% confidence upper limit was quoted as σB <

0.06 pb [19].
The systematic uncertainties in the cross section measurement

are summarized in Table 1. Luminosity, trigger, track finding, and
pion identification uncertainties are identical to those in Ref. [14].
To test the modelling of K L showering in the calorimeter, we var-
ied the calorimeter selection criteria used to analyze the ψ(2S)

data, and found that the maximum variation of the value of
B(ψ(2S) → K S K L) was 10%. The uncertainty in the background is
determined to be ±2% by varying by ±25% the interval in which
Table 1
Systematic uncertainties for e+e− → K S KL cross section.

Source Uncertainty in %

Luminosity ±1
Trigger ±2
Track finding ±2
Pion identification ±2
Shower rejection ±10
Background ±2

Total ±11

the MC estimate was normalized to the data. The sum in quadra-
ture of the systematic uncertainties is ±11%, and is dominated by
the uncertainty in the efficiency determination.

In Ref. [6] we had obtained

σB
(
17.4 GeV2, K +K −) = 2.23 ± 0.09(stat) ± 0.12(syst) pb,

F K + K −
(
17.4 GeV2) = (44 ± 1) × 10−3.

Thus the ratios are

σB(K S K L)/σB
(

K +K −) = 0.014, and

90% C.L. interval 0.005–0.032, (5)

F K S K L

(
17.4 GeV2)/F K + K −

(
17.4 GeV2) = 0.12, and

90% C.L. interval 0.07–0.19. (6)

It is not possible to confront these results with theoretical predic-
tions because for such large momentum transfers no predictions
exist for timelike form factors F K S KL , F K + K − , or their ratio. How-
ever, Lepage and Brodsky [2] had pointed out that if the ratio of
form factors F K S KL (|Q 2|)/F K + K − (|Q 2|) “is indeed appreciable (i.e.,
of order 1), then the odd, asymmetric components (which arise due
to SU(3) breaking) play a major role in the structure of kaon wave
function”. Our measured value of the ratio, F K S KL /F K + K − = 0.12 in
Eq. (6), and even the 90% CL upper limit of 0.19 are much smaller
than being “of order 1”. We therefore conclude that the present
measurement implies that the SU(3) breaking effect on the quark
wave function of the kaon is small.

The present measurement enables us to also address the ques-
tion of the relative magnitudes of the form factors of the charged
kaon and pion. In our recent precision measurement of these form
factors it was found that the ratio Fπ+π− (|Q 2|)/F K + K − (|Q 2|) =
1.09 ± 0.04 for |Q 2| = 17.4 GeV2. This is in strong disagree-
ment, by more than 9 sigma, with the pQCD prediction that for
large momentum transfers this ratio should be equal to the ra-
tio of the squares of the pion and kaon decay constants, f 2

π/ f 2 =
K
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0.70±0.01. Since this pQCD prediction is based on the assumption
of similar wave functions for pions and kaons, it was conjectured
by Lepage and Brodsky [2] that its violation could perhaps be ex-
plained by the effect of SU(3) breaking in the kaon wave function,
if it were found to be large. Our present evidence for a small SU(3)

breaking effect in the kaon wave function makes it unlikely that it
is responsible for the observed large violation of the pQCD predic-
tion for F (π+π−)/F (K +K −) [2], and other possible explanations
need to be considered.

To summarize, we have made the first measurement of the
form factor of the neutral kaon at |Q 2| = 17.4 GeV2,
F K S KL (17.4 GeV2) = 5.3 × 10−3, with a 90% confidence interval of
(2.9–8.2) × 10−3, including systematic uncertainties. This leads to
the result that the ratio F K S KL (17.4 GeV2)/F K + K − (17.4 GeV2) =
0.12, with a 90% confidence interval of 0.07–0.19. It implies that
the effect of SU(3) breaking on the wave function of the kaon
is small. In turn this implies that SU(3) breaking cannot explain
the strong experimental violation of the pQCD expectation that
Fπ+π−/F K + K − = f 2

π/ f 2
K at large momentum transfers. In all likeli-

hood it is the result of the shortcomings of pQCD, and its validity
even at momentum transfers as large as 17.4 GeV2.

This investigation was done using CLEO data, and as members
of the former CLEO Collaboration we thank it for this privilege.
This research was supported by the U.S. Department of Energy.
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