10,904 research outputs found
Benchmarking Nonequilibrium Green's Functions against Configuration Interaction for time-dependent Auger decay processes
We have recently proposed a Nonequilibrium Green's Function (NEGF) approach
to include Auger decay processes in the ultrafast charge dynamics of
photoionized molecules. Within the so called Generalized Kadanoff-Baym Ansatz
the fundamental unknowns of the NEGF equations are the reduced one-particle
density matrix of bound electrons and the occupations of the continuum states.
Both unknowns are one-time functions like the density in Time-Dependent
Functional Theory (TDDFT). In this work we assess the accuracy of the approach
against Configuration Interaction (CI) calculations in one-dimensional model
systems. Our results show that NEGF correctly captures qualitative and
quantitative features of the relaxation dynamics provided that the energy of
the Auger electron is much larger than the Coulomb repulsion between two holes
in the valence shells. For the accuracy of the results dynamical
electron-electron correlations or, equivalently, memory effects play a pivotal
role. The combination of our NEGF approach with the Sham-Schl\"uter equation
may provide useful insights for the development of TDDFT exchange-correlation
potentials with a history dependence.Comment: 7 pages, 3 figure
Optical absorption in small BN and C nanotubes
We present a theoretical study of the optical absorption spectrum of small
boron-nitride and carbon nanotubes using time-dependent density-functional
theory and the random phase approximation. Both for C and BN tubes, the
absorption of light polarized perpendicular to the tube-axis is strongly
suppressed due to local field effects. Since BN-tubes are wide band-gap
insulators, they only absorb in the ultra-violet energy regime, independently
of chirality and diameter. In comparison with the spectra of the single C and
BN-sheets, the tubes display additional fine-structure which stems from the
(quasi-) one-dimensionality of the tubes and sensitively depends on the
chirality and tube diameter. This fine structure can provide additional
information for the assignment of tube indices in high resolution optical
absorption spectroscopy.Comment: 5 pages, 3 figure
Transient charge and energy flow in the wide-band limit
The wide-band limit is a commonly used approximation to analyze transport
through nanoscale devices. In this work we investigate its applicability to the
study of charge and heat transport through molecular break junctions exposed to
voltage biases and temperature gradients. We find that while this approximation
faithfully describes the long-time charge and heat transport, it fails to
characterize the short-time behavior of the junction. In particular, we find
that the charge current flowing through the device shows a discontinuity when a
temperature gradient is applied, while the energy flow is discontinuous when a
voltage bias is switched on and even diverges when the junction is exposed to
both a temperature gradient and a voltage bias. We provide an explanation for
this pathological behavior and propose two possible solutions to this problem.Comment: 11 pages, 9 figure
Time-dependent density functional theory on a lattice
A time-dependent density functional theory (TDDFT) for a quantum many-body
system on a lattice is formulated rigorously. We prove the uniqueness of the
density-to-potential mapping and demonstrate that a given density is
-representable if the initial many-body state and the density satisfy
certain well defined conditions. In particular, we show that for a system
evolving from its ground state any density with a continuous second time
derivative is -representable and therefore the lattice TDDFT is guaranteed
to exist. The TDDFT existence and uniqueness theorem is valid for any connected
lattice, independently of its size, geometry and/or spatial dimensionality. The
general statements of the existence theorem are illustrated on a pedagogical
exactly solvable example which displays all details and subtleties of the proof
in a transparent form. In conclusion we briefly discuss remaining open problems
and directions for a future research.Comment: 12 pages, 1 figur
Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines
A significant fraction of the molecular gas in star-forming regions is
irradiated by stellar UV photons. In these environments, the electron density
(n_e) plays a critical role in the gas dynamics, chemistry, and collisional
excitation of certain molecules. We determine n_e in the prototypical strongly
irradiated photodissociation region (PDR), the Orion Bar, from the detection of
new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR
[13CII] hyperfine line observations. We detect 12 mmCRLs (including alpha,
beta, and gamma transitions) observed with the IRAM 30m telescope, at ~25''
angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also
present a mmCRL emission cut across the PDR. These lines trace the C+/C/CO gas
transition layer. As the much lower frequency carbon radio recombination lines,
mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent HII
region. This is readily seen from their narrow line profiles (dv=2.6+/-0.4
km/s) and line peak LSR velocities (v_LSR=+10.7+/-0.2 km/s). Optically thin
[13CII] hyperfine lines and molecular lines - emitted close to the DF by trace
species such as reactive ions CO+ and HOC+ - show the same line profiles. We
use non-LTE excitation models of [13CII] and mmCRLs and derive n_e = 60-100
cm^-3 and T_e = 500-600 K toward the DF. The inferred electron densities are
high, up to an order of magnitude higher than previously thought. They provide
a lower limit to the gas thermal pressure at the PDR edge without using
molecular tracers. We obtain P_th > (2-4)x10^8 cm^-3 K assuming that the
electron abundance is equal or lower than the gas-phase elemental abundance of
carbon. Such elevated thermal pressures leave little room for magnetic pressure
support and agree with a scenario in which the PDR photoevaporates.Comment: Accepted for publication in A&A Letters (includes language editor
corrections
- …