246 research outputs found

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid

    Towards novel difluorinated sugar mimetrics; syntheses and conformational analyses of highly-functionalised difluorinated cyclooctenones

    Get PDF
    Highly-functionalised difluorinated cyclooctenones were synthesised from trifluoroethanol using either metallated difluoroenol acetal or carbamate chemistry, followed by a [2,3]-Wittig rearrangement or aldol reaction. Efficient RCM reactions afforded the title compounds which showed rather restricted fluxional behaviour by VT 19F NMR. Topological characterisation by molecular modelling and NOESY/ROESY experiments offered a number of challenges, but allowed the identification of two favoured boat-chair conformers which interconverted by pseudorotation with relatively large activation barriers

    Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polychlorinated biphenyls are persistent organic pollutants that can be metabolized via hydroxylated PCBs to PCB sulfate metabolites. The sensitive and selective analysis of PCB sulfate monoesters by gas chromatography-mass spectrometry (GC-MS) requires their derivatization, for example, as PCB 2,2,2-trichloroethyl (TCE) sulfate monoesters. To aid in the identification of unknown PCB sulfate metabolites isolated from biological samples, the electron impact MS fragmentation pathways of selected PCB TCE sulfate diesters were analyzed and compared to the fragmentation pathways of the corresponding methoxylated PCBs.</p> <p>Results</p> <p>The most abundant and characteristic fragment ions of PCB TCE sulfate diesters were formed by releasing CHCCl<sub>3</sub>, SO<sub>3</sub>, HCl<sub>2 </sub>and/or CCl<sub>3 </sub>from the TCE sulfate moiety and Cl<sub>2</sub>, HCl, ethyne and chloroethyne from an intermediate phenylcyclopentadienyl cation. The fragmentation pattern depended on the degree of chlorination and the position of the TCE sulfate moiety (i.e., <it>ortho </it>vs. <it>meta/para </it>to the second phenyl ring), but were independent of the chlorine substitution pattern. These fragmentation pathways are similar to the fragmentation pathways of structurally related methoxylated PCBs.</p> <p>Conclusion</p> <p>Knowledge of the fragmentation patterns of PCB TCE sulfate diesters will greatly aid in determining the position of sulfate moiety (<it>ortho </it>vs. <it>meta/para</it>) of unknown PCB sulfate metabolites isolated from environmental or laboratory samples.</p

    Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach

    Get PDF
    Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses

    A Natural Love of Natural Products

    Get PDF
    Recent research on the chemistry of natural products from the author’s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies with the epothilones suggest that the current tubulin-binding model needs to be modified. Examples of natural products discovery and biodiversity conservation in Suriname and Madagascar are also presented, and it is concluded that natural products chemistry will continue to make significant contributions to drug discovery. My first real exposure to natural products chemistry came in my third and final year as an undergraduate at Cambridge University, when I attended a course of lectures on the chemistry of natural products by the Nobel Prize-winning chemist Sir Alexander Todd (later to become Lord Todd). The lectures included many references to his own work in the field, with stories of his early work on the structure of cholesterol, th

    Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids

    No full text
    The ability of platinum and gold catalysts to effect powerful atom-economic transformations has led to a marked increase in their utilization. The quite remarkable correlation of their catalytic behavior with the available structural data, coordination chemistry, and organometallic reactivity patterns, including relativistic effects, allows the underlying principles of catalytic carbophilic activation by π acids to be formulated. The spectrum of reactivity extends beyond their utility as catalytic and benign alternatives to conventional stoichiometric π acids. The resulting reactivity profile allows this entire field of catalysis to be rationalized, and brings together the apparently disparate electrophilic metal carbene and nonclassical carbocation explanations. The advances in coupling, cycloisomerization, and structural reorganization—from the design of new transformations to the improvement to known reactions—are highlighted in this Review. The application of platinum- and gold-catalyzed transformations in natural product synthesis is also discussed

    Palladium(II)‐ N

    No full text

    Ruthenium carbene complexes with N,N'-bis(mesityl) imidazol-2-ylidene ligands : RCM catalysts of extended scope

    No full text
    The ruthenium carbene complexes 3a,b bearing imidazol-2-ylidene ligands constitute excellent precatalysts for ring-closing metathesis (RCM) reactions allowing the formation of tri- and tetrasubstituted cycloalkenes. They also apply to annulations that are beyond the scope of the standard Grubbs carbene 1 as well as to ring-closing reactions of acrylic acid derivatives even if the resulting alpha,beta-unsaturated lactones (or lactams) are tri- or tetrasubstituted. The reactivity of 3a was found to be highly dependent on the reaction medium: particularly high reaction rates are observed in toluene, although this solvent also leads to an increased tendency of the catalyst to isomerize the double bonds of the substrates
    corecore