48 research outputs found

    Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA)

    Get PDF
    The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) Cα and Cβ, respectively. Cα is expressed in all eukaryotic tissues examined and studies of Cα knockout mice demonstrate a crucial role for Cα in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the Cα1 splice variant of the kinase. Cα variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser109 significantly reduced kinase activity while R subunit binding was unaltered. Mutation of Cα Gly186 completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly186 is located in the highly conserved DFG motif of Cα and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg2+, which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser109 or Gly186 may be faced with abnormal development and possibly severe disease

    Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

    Get PDF
    Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives

    The B cell antigen CD75 is a cell surface sialytransferase

    No full text
    In this work we have isolated a cDNA clone encoding the B cell antigen CD75. The amino acid sequence of CD75 is shown to be identical to that of human alpha 2,6 sialyltransferase, believed to be primarily associated with the Golgi complex. This is the first demonstration of cell surface expression of sialytransferase which, in B cells, may play an important role in intercellular adhesion and antigen presentation event

    Chronic Lymphocytic Leukemia Cells Are Activated and Proliferate in Response to Specific T Helper Cells

    Get PDF
    There is increasing interest in the chronic lymphocytic leukemia (CLL) microenvironment and the mechanisms that may promote CLL cell survival and proliferation. A role for T helper (Th) cells has been suggested, but current evidence is only circumstantial. Here we show that CLL patients had memory Th cells that were specific for endogenous CLL antigens. These Th cells activated autologous CLL cell proliferation in vitro and in human → mouse xenograft experiments. Moreover, CLL cells were efficient antigen-presenting cells that could endocytose and process complex proteins through antigen uptake pathways, including the B cell receptor. Activation of CLL cells by Th cells was contact and CD40L dependent. The results suggest that CLL is driven by ongoing immune responses related to Th cell–CLL cell interaction. We propose that Th cells support malignant B cells and that they could be targeted in the treatment of CLL
    corecore