1,836 research outputs found

    Mitochondrial DNA: the overlooked oncogenome?

    Get PDF
    Perturbed mitochondrial bioenergetics constitute a core pillar of cancer-associated metabolic dysfunction. While mitochondrial dysfunction in cancer may result from myriad biochemical causes, a historically neglected source is that of the mitochondrial genome. Recent large-scale sequencing efforts and clinical studies have highlighted the prevalence of mutations in mitochondrial DNA (mtDNA) in human tumours and their potential roles in cancer progression. In this review we discuss the biology of the mitochondrial genome, sources of mtDNA mutations, and experimental evidence of a role for mtDNA mutations in cancer. We also propose a 'metabolic licensing' model for mtDNA mutation-derived dysfunction in cancer initiation and progression

    Isoflavones and other compounds from the roots of Iris marsica I. Ricci E Colas. Collected from Majella National Park, Italy

    Get PDF
    In this study, a phytochemical analysis was performed, for the first time, on Iris marsica I. Ricci e Colas. In particular, the attention was focused on the constituents of the roots. Twenty-one compounds were isolated by column chromatography and were analyzed/identified by NMR spectroscopy and mass spectrometry. They all own chemotaxonomic, ethno-pharmacological and nutraceutical relevance which allowed us to provide a phytochemical rationale, for the correct botanical classification of this species, for the employment of its roots in folk medicine like for all the other species belonging to the Iris genus and, lastly, for their further uses as food with important healthy benefits. All of these parts were broadly discussed about within the text

    Postharvest behaviour of minimally processed watercress

    Get PDF
    16-18Watercress (Nasturtium officinale R. Br.) is an aquatic plant of the Brassicaceae family and used as a leafy vegetable that grows in and around water. It is consumed raw or steamed and has a short shelf life of approximately seven days. The objective of this study was to evaluate the postharvest behaviour of watercress minimally processed and stored at optimal storage temperature vs. market temperature. Treatments were: shoots packed with plain film (PD961EZ, 31µm thickness) and stored in refrigerated chambers at 1 ± 0.5 oC and 8 ± 2 oC for 10 days. Overall visual quality, gas concentration inside the packages, chlorophyll, reducing sugar, ascorbic acid, oxalic acid and weight loss were evaluated. At the end of the storage period overall visual quality, gas concentration and reducing sugars were affected by storage time and temperature, whereas dehidro ascorbic, oxalic acid and weight loss were not

    Postharvest behaviour of minimally processed watercress

    Get PDF
    16-18Watercress (Nasturtium officinale R. Br.) is an aquatic plant of the Brassicaceae family and used as a leafy vegetable that grows in and around water. It is consumed raw or steamed and has a short shelf life of approximately seven days. The objective of this study was to evaluate the postharvest behaviour of watercress minimally processed and stored at optimal storage temperature vs. market temperature. Treatments were: shoots packed with plain film (PD961EZ, 31µm thickness) and stored in refrigerated chambers at 1 ± 0.5 oC and 8 ± 2 oC for 10 days. Overall visual quality, gas concentration inside the packages, chlorophyll, reducing sugar, ascorbic acid, oxalic acid and weight loss were evaluated. At the end of the storage period overall visual quality, gas concentration and reducing sugars were affected by storage time and temperature, whereas dehidro ascorbic, oxalic acid and weight loss were not

    From rods to helices: evidence of a screw-like nematic phase

    Full text link
    Evidence of a special chiral nematic phase is provided using numerical simulation and Onsager theory for systems of hard helical particles. This phase appears at the high density end of the nematic phase, when helices are well aligned, and is characterized by the C2_2 symmetry axes of the helices spiraling around the nematic director with periodicity equal to the particle pitch. This coupling between translational and rotational degrees of freedom allows a more efficient packing and hence an increase of translational entropy. Suitable order parameters and correlation functions are introduced to identify this screw-like phase, whose main features are then studied as a function of radius and pitch of the helical particles. Our study highlights the physical mechanism underlying a similar ordering observed in colloidal helical flagella [E. Barry et al. \textit{Phys. Rev. Lett.} \textbf{96}, 018305 (2006)] and raises the question of whether it could be observed in other helical particle systems, such as DNA, at sufficiently high densities.Comment: List of authors correcte

    Dielectric permittivity of aqueous solutions of electrolytes probed by THz time-domain and FTIR spectroscopy

    Get PDF
    We have measured the dielectric permittivity of pure water and aqueous chlorides solutions in the range 0.2-1.5THz. We considered the relaxation spectral function as the weighted sum of two independent single-parameter Debye functions. Such an approach allowed to drastically reduce the number of the parameters used in the fit which we set only by physical considerations. The resulting functions allow to fit the experimental data for pure water and solutions of LiCl, KCl, NaCl, and CsCl and to predict the excess response on the high frequency side of the relaxation without “ad hoc” corrective terms

    Sensing Charges of Ci-VSP

    Get PDF
    The Ciona intestinalis Voltage Sensor-containing Phosphatase (Ci-VSP) is a member of the Voltage Sensitive Phosphatase family that exhibits membrane potential-controlled enzymatic activity. Alignments of the amino acid sequence of Ci-VSP against Voltage Gated Channels (VGC) indicate that its Voltage Sensing Domain (VSD) is formed by four transmembrane segments. The putative fourth segment (S4) of Ci-VSP extends between the arginine (R) in position 217 and the glutamine (Q) in position 239, containing five arginines, which might be the voltage sensing charges. Although it has been shown that R229 and R232 are critical for voltage sensing in Ci-VSP (Murata et al., 2005), the role of the remaining charges is still unclear. To address this issue, we have performed a partial Histidine Scanning of the S4 of Ci-VSP, following the paradigm established for the VGC Shaker (Starace and Bezanilla, 2004). The voltage dependence of the sensing current of the R217H mutant was modulated by pH. Decreasing the external pH shifted the Q-V curve towards positive potentials, while a pH increase had the converse effect, consistent with the finding that neutralizing R217 (R217Q) produces a negative shift of the voltage dependence of Ci-VSP (Kohout et al., 2008). However, the total net charge of R217H did not change with pH, indicating that R217 does not participate in sensing the membrane potential. When the second arginine is replaced by histidine, the resultant mutant (R223H) exhibits a voltage dependent proton current which closes at positive potentials, resembling the current recorded from Shaker-W434F with its first gating charge replaced by histidine (R362H). This result strongly suggests that R223 has access to both the intra- and the extracellular media depending on voltage. Taken together, our results indicate that R223 is the most extracellularly located sensing charge of the Ci-VSP S4 segment. (Support: NIHGM030376

    Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

    Get PDF
    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing
    • …
    corecore