18 research outputs found

    Oligomerization of Monoolefins by Homogeneous Catalysts

    No full text
    In this article are summarized the different mechanistic pathways for the oligomerization of monoolefins by homogeneous catalysts, particularly for ethylene and alpha olefins. The major topics are: the production of non regioselective and also regioselective olefin dimers, the production of linear alpha olefins by ethylene oligomerization as well as the selective dimerization of ethylene and its selective trimerization. Several industrial developments initiated by IFP are presented to illustrate this topic

    Nickel and Palladium Complexes with New Phosphinito-Imine Ligands and Their Application as Ethylene Oligomerization Catalysts

    Get PDF
    Phosphinito-imines, a new class of P,N donors, are readily generated by reaction of bulky arylamide anions [R2CONAr]− (R2 = Me or t-Bu; Ar = 2,6-i-Pr2C6H4) with chlorophosphines ClP(R1)2. In solution, free phosphinito-imines exist in equilibrium with the corresponding amidophosphine tautomers, containing a nitrogen-bound P(R1)2 group. However, reacting the tautomer mixtures with metal precursor complexes, such as NiBr2(dme) or PdCl2(cod), selectively affords stable phosphinito-imine complexes MX2(P-N) (M = Ni, Pd) in excellent yields. These complexes are diamagnetic and exhibit square-planar structures in the solid state, but in solution, the Ni derivatives exchange with a small amount of the corresponding high-spin tetrahedral isomers. On treatment with MMAO or DEAC, NiX2(P-N) complexes become active ethylene oligomerization catalysts, affording mainly butenes along with smaller amounts of hexenes and octenes. The activity and the selectivity of these catalysts depend on the structure of the phosphinito-imine ligand and the cocatalyst used. When activated with DEAC, complexes containing the P(i-Pr)2 moiety are extremely active, achieving TOFs over 106 mol C2H4/mol Ni·h and high selectivity for butenesPeer reviewe
    corecore