205 research outputs found

    Predictors of successful weight loss with relative maintenance of fat-free mass in individuals with overweight and obesity on an 8-week low-energy diet

    Get PDF
    A low-energy diet (LED) is an effective approach to induce a rapid weight loss in individuals with overweight. However, reported disproportionally large losses of fat-free mass (FFM) after an LED trigger the question of adequate protein content. Additionally, not all individuals have the same degree of weight loss success. After an 8-week LED providing 5020 kJ/d for men and 4184 kJ/d for women (84/70 g protein/d) among overweight and obese adults, we aimed to investigate the relationship between protein intake relative to initial FFM and proportion of weight lost as FFM as well as the individual characteristics associated with weight loss success. We assessed all outcomes baseline and after the LED. A total of 286 participants (sixty-four men and 222 women) initiated the LED of which 82 % completed and 70 % achieved a substantial weight loss (defined as ≥8 %). Protein intake in the range 1·0–1·6 g protein/d per kg FFM at baseline for men and 1·1–2·2 g protein/d per kg FFM at baseline for women was not associated with loss of FFM (P = 0·632). Higher Three-Factor Eating Questionnaire (TFEQ) hunger at baseline and reductions in TFEQ disinhibition and hunger during the LED were associated with larger weight loss (all P ≤ 0·020); whereas lower sleep quality at baseline predicted less successful weight loss using intention to treat analysis (P = 0·021), possibly driven by those dropping out (n 81, P = 0·067 v. completers: n 198, P = 0·659). Thus, the protein intakes relative to initial FFM were sufficient for maintenance of FFM and specific eating behaviour characteristics were associated with weight loss succes

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity

    Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response

    Get PDF
    Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins

    Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    Get PDF
    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity

    Protoplast Formation in Escherichia coli

    No full text
    corecore